Page 528 - Handbook of Properties of Textile and Technical Fibres
P. 528

Tensile failure of polyester fibers                                501

           Akahane T, Nakayasu H, Kajitani K: Distribution of diethylene glycol component in the fine
               texture of polyester fibers, Sen-i Gakkaishi 36:T233eT240, 1980.
           Allen NS, Edge M, Mohammadian M: Physicochemical aspects of the environmental degra-
               dation of poly(ethylene terephthalate), Polym Degrad Stab 43:229e237, 1994.
           Arridge RG, Barham PJ: A theory for the drawing of oriented crystalline polymers, J Polym Sci
               Phys 16:1297e1319, 1978.
           Arridge RGC, Barham PJ: A fibre composite model of drawn crystalline polymers, Polymer 19:
               654e658, 1978.
           Arruda EM, Boyce MC: Three-dimensional constitutive model for the large stretch behavior of
               rubber elastic material, J Mech Phys Sol 41:389e412, 1993.
           Ball RC, et al.: Elasticity of entangled network, Polymer 22:1010e1018, 1981.
           Bartolotta A, Marco GD, Farsaci F, Lanza M: DSC and DMTA study of annealed cold-drawn
               PET: a three phase model interpretation, Polymer 44:5771e5777, 2003.
           Bastiaansen CWM, Meijer HEH, Lemstra PJ: Memory effects in polyethylenes: influence of
               processing and crystallization history, Polymer 31:1435e1440, 1990.
           Bauwens JC: A new approach to describe the tensile stress-strain curve of a glassy polymer,
               J Mater Sci 13:1443e1448, 1978.
           Bauwens C, Bauwens JC: The mechanism of creep in glassy polymers, J Mater Sci 10:
               1779e1787, 1975.
           Bauwens-Crowet C, Bauwens JC, Homés G: Tensile yield stress behavior of glassy polymers,
               J Polym Sci A2 7:735e742, 1969.
           Bechtel SE, Vohra S, Jacob KI: Modeling of a two-stage draw process, Polymer 42:2045e2059,
               2001.
           Bereton MG, Davies GR, Jakeways R, Smith T: Hysteresis of the stress-induced crystalline
               phase transition in poly(butylene terephthalate), Polymer 19:17e26, 1978.
           Bergstroem JS, Boyce MC: Constitutive modeling of the large strain time-dependent behavior of
               elastomers, J Mech Phys Sol 46:931e954, 1998.
           Bikiaris DM, Karayannidis GP: Effect of carboxylic end groups on thermooxidative stability of
               PET and PBT, Polym Degrad Stab 63:213e218, 1999.
           Blundell DJ, MacKerron DH, Fuller W: Characterization of strain-induced crystallization of
               poly(ethylene terephthalate) at fast draw rates using synchrotron radiation, Polymer 37:
               3303e3311, 1996.
           Bonart R: Parakristalline Strukturen in Poly€ athylenterephthalat (PET), Kolloid Ztsch 213:1e11,
               1966.
           Bowden PB, Young RD: Deformation mechanisms in crystalline polymers, J Mater Sci 9:
               2034e2051, 1974.
           Boyce MC, Parks DM, Argon AS: Large inelastic deformation of glassy polymers. I. Rate
               dependent constitutive model, Mech Mater 7:15e33, 1988.
           Boyce MC, Socrate S, Llana PG: Constitutive model for the finite deformation stressestrain
               behavior of poly(ethylene terephthalate) above the glass transition, Polymer 41:
               2183e2201, 2000.
           Breese DR, Beaucage G: A review of modeling approaches for oriented semi-crystalline
               polymers, Curr Opin Solid State Mater Sci 8:439e448, 2004.
           Brody H: The extensibility of PET fibers spun at high wind-up speed, J Macromol Sci Phys B22:
               19e41, 1983.
           Brunelle D: Cyclic oligomer chemistry, Polym Sci A Polym Chem 46:151e1164, 2008.
           Buchner S, Wiswe D, Zachmann HG: Kinetics of crystallization and melting behaviour of poly
               (ethylene naphthalene-2, 6-dicarboxylate), Polymer 30:480e488, 1989.
   523   524   525   526   527   528   529   530   531   532   533