Page 288 - Hardware Implementation of Finite-Field Arithmetic
P. 288

268     Cha pte r  Ei g h t


               [Sti90] D. R. Stinson. “Some observations on parallel algorithms for fast exponentia-
                  tion in GF(2 ).” SIAM Journal on Computing, vol. 19, pp. 711–717, 1990.
                          m
               [Sun06] B. Sunar. “A Euclidean Algorithm for Normal Bases.” Acta Applicandae
                  Mathematicae, vol. 93, pp. 57–74, September 2006.
               [TYT01] N. Takagi, J. Yoshiki, and K. Takagi. “A Fast Algorithm for Multiplicative
                  Inversion in GF(2 ) Using Normal Basis.” IEEE Transactions on Computers,
                               m
                  vol. 50, no. 5, pp. 394–398, May 2001.
               [Wan86] C. C. Wang, “A Generalized Algorithm to Design Finite Field Normal Basis
                  Multipliers.” The Telecommunications and Data Acquisition Progress Report 42-87,
                  pp. 125–139, July-September 1986.
               [WTSDOR85] C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and
                  I. S. Reed. “VLSI Architectures for Computing Multiplications and Inverses
                        m
                  in GF(2 ).” IEEE Transactions on Computers, vol. c-34, no. 8, pp. 709-717,
                  August 1985.
               [YKPKL05] D. J. Yang, C. H. Kim, Y. Park, Y. Kim, and J. Lim. “Modified Sequential
                  Normal Basis Multipliers for Type II Optimal Normal Bases.” ICCSA 2005,
                  LNCS 3481, pp. 647–656, 2005.
               [YL04] H. S. Yoo and D. Lee. “Computation of Multiplicative Inverses in GF(2 )
                                                                       m
                  Using Palindromic Representation.” ICCSA 2004, LNCS 3043, pp. 510–516,
                  2004.
   283   284   285   286   287   288   289   290   291   292   293