Page 287 - Hardware Implementation of Finite-Field Arithmetic
P. 287
m
Operations over GF (2 )—Normal Bases 267
8.9 References
m
[AA06] T. F. Al-Somani and A. Amin. “Hardware Implementations of GF(2 )
Arithmetic Using Normal Basis.” Journal of Applied Sciences, vol. 6, no. 6,
pp. 1362–1372, 2006.
[BGMW92] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. “Fast
Exponentiation with Precomputation: Algorithms and Lower Bounds.”
Advances in Cryptology: Eurocrypt’92, Lecture Notes in Computer Science LNCS
658, pp. 200–207, 1992.
[BRS98] I. F. Blake, R. M. Roth, and G. Seroussi. “Efficient Arithmetic in GF(2 )
n
through Palindromic Representation.” Technical Report, Hewlett-Packard, HPL-
98-134, August 1998.
m
[Fen89] G. L. Feng. “A VLSI Architecture for Fast Inversion in GF(2 ).” IEEE
Transactions on Computers, vol. 38, no. 10, pp. 1383–1386, October 1989.
[GL92] S. Gao Jr. and H. W. Lenstra. “Optimal Normal Bases.” Designs, Codes, and
Cryptography, vol. 2, pp. 315–323, 1992.
[Gat91] J. von zur Gathen. “Efficient exponentiation in finite fields.” Proc. of the 32nd
IEEE Symposium on the Foundations of Computer Science, pp. 384–391, 1991.
[Gor98] D. M. Gordon. “A survey of fast exponentiation methods.” Journal of
Algorithms, vol. 27, no. 1, pp. 129–146, April 1998.
[HWB93] M. A. Hasan, M. Z. Wang, and V. K. Bhargava. “A Modified Massey-
Omura Parallel Multiplier for a Class of Finite Fields.” IEEE Transactions on
Computers, vol. 42, no. 10, pp. 1278–1280, October 1993.
[IT88] T. Itoh and S. Tsujii. “A Fast Algorithm for Computing Multiplicative Inverses
in GF(2 ) Using Normal Basis.” Information and Computing, vol. 78, pp. 171–177,
m
1988.
[KKH03] S. Kwon, C. H. Kim, and C. P. Hong. “Efficient Exponentiation for a Class
m
of Finite Fields GF(2 ) Determined by Gauss Periods.” CHES 2003, LNCS 2779,
pp. 228–242, 2003.
[Knu81] D. E. Knuth. The Art of Computer Programming, vol. 2: Seminumerical
Algorithms, vol. 2. Addison-Wesley, MA, USA, 2d ed., 1981.
[KS98] Ç. K. Koç and B. Sunar. “Low-Complexity Bit-Parallel Canonical and Normal
Basis Multipliers for a Class of Finite Fields.” IEEE Transactions on Computers,
vol. 47, no. 3, pp. 353–356, March 1998.
[LN94] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications.
Cambridge University Press, Cambridge, 1994.
[MBGMVY93] A. J. Menezes, I. Blake, X. Gao, R. Mullin, S. Vanstone, and
T. Yaghoobian. Applications of Finite Fields. Kluwer Academic Publisher,
Boston, MA, 1993.
[MO86] J. L. Massey and J. K. Omura. “Computational Method and Apparatus for
Finite Field Arithmetic.” US Patent No. 4,587,627. 1986.
[MOVW88] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson.
n
“Optimal Normal Bases in GF(p ).” Discrete Applied Mathematics, vol. 22,
pp. 149–161, 1988/1989.
[RH00] A. Reyhani-Masoleh and M. Anwar Hasan. “On Efficient Normal Basis
Multiplication.” INDOCRYPT 2000, LNCS 1977, pp. 213–224, 2000.
[RH02] A. Reyhani-Masoleh and M. Anwar Hasan. “A New Construction of
Massey-Omura Parallel Multiplier over GF(2 ).” IEEE Transactions on Computers,
m
vol. 51, no. 5, pp. 511–520, May 2002.
[RH03a] A. Reyhani-Masoleh and M. Anwar Hasan. “Efficient Multiplication
Beyond Optimal Normal Bases.” IEEE Transactions on Computers, vol. 52,
no. 4, pp. 428–439, April 2003.
[RH03b] A. Reyhani-Masoleh and M. Anwar Hasan. “Low Complexity Sequential
Normal Basis Multipliers over GF(2 ).” 16th IEEE Symposium on Computer
m
Arithmetic – ARITH’03, pp. 188–195, June 2003.
[RH05] A. Reyhani-Masoleh and M. Anwar Hasan. “Low Complexity Word-Level
Sequential Normal Basis Multipliers.” IEEE Transactions on Computers, vol. 54,
no. 2, pp. 98–110, February 2005.