Page 43 - Hardware Implementation of Finite-Field Arithmetic
P. 43

26     Cha pte r  T w o


                                        r
                                        y
                                  q = –1     q = 0    q = 1




                                                                   s
                   –2y         –y                 y          2y



                                       –y
               FIGURE 2.1  Robertson diagram.

                  Thus, r is equal to either s − y (if q = 1), s (if q = 0), or s + y (if q = −1).
                  Now consider a natural m belonging to the range

                                               k
                                     2 k − 1  ≤ m < 2                (2.2)
                  and an integer x belonging to the range
                                        n
                                      −2  ≤ x < 2 n                  (2.3)
                  with n ≥ k. Then define
                                      y = m2 n − k                   (2.4)
                  so that

                                              n
                                     2 n − 1  ≤ y < 2                (2.5)
                  From Eqs. (2.3), (2.4), and (2.5)

                                 −2y ≤ −2  ≤ x < 2  ≤ 2y             (2.6)
                                        n
                                               n
                  Then, use Property 2.1 and compute
                                   x = q y + r
                                       1   1
                                  2r  = q y + r
                                   1   2   2
                                  2r  = q y + r
                                   2   3   3
                                       . . .
                                2r   = q   y + r                     (2.7)
                                  n − k  n − k + 1  n − k + 1
                  According to Eq. (2.6), −2y ≤ x < 2y, so that Property 2.1 can be
               used and −y ≤ r  < y.
                            1
                  Similarly, as −2y ≤ 2r  < 2y Property 2.1 can be used and −y ≤ r  < y,
                                   1                                 2
               and so on. To summarize
                            −y ≤ r  < y, ∀i = 1, 2, . . . , n − k + 1   (2.8)
                                 i
   38   39   40   41   42   43   44   45   46   47   48