Page 381 - High Power Laser Handbook
P. 381

350     So l i d - S t at e   La s e r s                                                                       Ultrafast Lasers in Thin-Disk Geometry    351


                        12.  Baer, C. R. E., Kränkel, C., Saraceno, C. J., Heckl, O. H., Golling, M., Südmeyer,
                          T., Keller, U., et al., “Efficient Mode-Locked Yb:Lu O  Thin Disk Laser with an
                                                              3
                                                            2
                          Average Power of 103 W” (talk AMD2), A dvanced Solid State Photonics (ASSP),
                          San Diego, CA: 2010.
                        13.  Baer, C. R. E., Kränkel, C, Saraceno, C. J. ; Heckl, O. H., Golling, M., Peters,
                          R., Petermann, et al., “Femtosecond Thin-disk Laser with 141 W of Average
                          Power,” Opt. Lett., 35, 2719–2721, 2010.
                        14.  Neuhaus, J., Bauer, D., Zhang, J., Killi, A., Kleinbauer, J., Kumkar, M., Weiler,
                          S., et al., “Subpicosecond Thin-Disk Laser Oscillator with Pulse Energies of
                          up to 25.9 Microjoules by Use of an Active Multipass Geometry,” Opt. Express,
                          16: 20530–20539, 2008.
                        15.  Maas, D. J. H. C., Bellancourt, A.-R., Rudin, B., Golling, M., Unold, H. J.,
                          Südmeyer, T., and Keller, U., “Vertical Integration of Ultrafast Semiconductor
                          Lasers,” Appl. Phys. B, 88: 493–497, 2007.
                        16.  Abate, J. A., Lund, L., Brown, D., Jacobs, S., Refermat, S., Kelly, J., Gavin, M.,
                          et al., “Active Mirror: A Large-Aperture Medium-Repetition Rate Nd:Glass
                          Amplifier,” Appl. Opt., 20: 351–361, 1981.
                        17.  Fan, T. Y., and Byer, R. L., “Modelling and CW Operation of a Quasi-Three-
                          Level 946 nm Nd:YAG Laser,” IEEE J. Quantum Elect., 23: 605–612, 1987.
                        18.  Chow, W. W., and Koch, S. W., Semiconductor: Laser Fundamentals. Physics of the
                          Gain Materials. Berlin, Germany: Springer, 1999.
                        19.  Forster, T., “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann.
                          Phys. Berlin, 437: 55–75, 1948.
                        20.  Beattie,  A.  R.,  and  Landsberg,  P.  T.,  “Auger  Effect  in  Semiconductors,”
                          Proceedings of the Royal Society of London Series A: Mathematical and Physical
                          Sciences, 249: 16–29, 1959.
                        21.  Häring, R., Paschotta, R., Aschwanden, A., Gini, E., Morier-Genoud, F., and
                          Keller, U., “High-power passively mode-locked semiconductor lasers,” IEEE
                          J. Quantum Electron., 38: 1268–1275, 2002.
                        22.  Larionov,  M.,  “Kontaktierung  und  Charakterisierung  von  Kristallen  für
                          Scheibenlaser,” Institut für Strahlwerkzeuge, Stuttgart, Germany: Universität
                          Stuttgart, 2009.
                        23.  Killi,  A.,  Zawischa,  I.,  Sutter,  D.,  Kleinbauer,  J.,  Schad,  S.,  Neuhaus,  J.,
                          and Schmitz, C., “Current Status and Development Trends of Disk Laser
                          Technology,”  Conference  on  Solid  State  Lasers  XVII,  eds.  W.  A.  Clarkson,
                          N.  H.  Hodgson,  and  R.  K.  Shori,  San  Jose,  CA:  SPIE-Int.  Soc.  Optical
                          Engineering, L8710–L8710, 2008.
                        24.  Rudin, B., Rutz, A., Maas, D. J. H. C., Bellancourt, A. R., Gini, E., Südmeyer, T.,
                          and Keller, U., “Efficient High-Power VECSEL Generates 20 W Continuouswave
                          Radiation in a Fundamental Transverse Mode” (paper ME2), Advanced Solid-
                          State Photonics (ASSP), Denver, USA C 2009.
                        25.  Bedford, R. G., Kolesik, M., Chilla, J. L. A., Reed, M. K., Nelson, T. R., and
                          Moloney,  J.  V.,  “Power-Limiting  Mechanisms  in  VECSELs,”  Conference  on
                          Enabling Photonics Technologies for Defense, Security, and Aerospace Applications, ed.
                          A. R. Pirich, Orlando, FL: SPIE-Int. Soc. Optical Engineering, 199–208, 2005.
                        26.  Brunner,  F.,  Südmeyer,  T.,  Innerhofer,  E.,  Paschotta,  R.,  Morier-Genoud,
                          F., Keller, U., Gao, J., et al., “240-fs Pulses with 22-W Average Power from
                          a  Passively  Mode-Locked  Thin-Disk  Yb:KY(WO )   Laser”  (talk  CME3),
                                                              4 2
                          Conference on Laser and Electro-Optics CLEO 2002, Long Beach, CA, 2002.
                        27.  Kränkel, C., Johannsen, J., Peters, R., Petermann, K., and Huber, G., “Continuous-
                          Wave High Power Laser Operation and Tunability of Yb:LaSc (BO )  in Thin
                                                                         3 4
                                                                     3
                          Disk Configuration,” Appl. Phys. B, 87: 217–220, 2007.
                        28.  Kränkel, C., Peters, R., Petermann, K., Loiseau, P., Aka, G., and Huber, G.,
                          “Efficient Continuous-Wave Thin Disk Laser Operation of Yb:Ca YO(BO )
                                                                              3 3
                                                                        4
                          in EIIZ and EIIX Orientations with 26 W Output Power,” J. Opt Soc. Am. B,
                          26: 1310–1314, 2009.
                        29.  Kränkel, C., Peters, R., Petermann, K., and Huber, G., “High Power Operation
                          of Yb:LuVO  and Yb:YVO  Crystals in the Thin-Disk Laser Setup” (paper
                                             4
                                   4
                          MA 3), Advanced Solid-State Photonics (ASSP), Vancouver, Canada, 2007.
   376   377   378   379   380   381   382   383   384   385   386