Page 382 - High Power Laser Handbook
P. 382

350   So l i d - S t at e   La s e r s     Ultrafast Lasers in Thin-Disk Geometry    351


                        30.  Peters, R., Kränkel, C., Petermann, K., and Huber, G., “Power Scaling Potential
                          of Yb:NGW in Thin Disk Laser Configuration,” Appl. Phys. B, 91: 25–28, 2008.
                        31.  Peters, R., Kränkel, C., Petermann, K., and Huber, G., “Broadly Tunable High-
                          Power Yb:Lu O  Thin Disk Laser with 80% Slope Efficiency,” Opt. Express, 15:
                                     3
                                   2
                          7075–7082, 2007.
                        32.  Peters, R., Kränkel, C., Petermann, K., and Huber, G., “High Power Laser
                          Operation  of  Sesquioxides  Yb:Lu O   and  Yb:Sc O ”  (paper  CTuKK4),
                                                   2
                                                               2
                                                                3
                                                     3
                          Conference on Lasers and Electro-Optics, San Jose, CA, 2008.
                        33.  Palmer, G., Schultze, M., Siegel, M., Emons, M., Bünting, U., and Morgner, U.,
                          “Passively Mode-Locked Yb:KLu(WO )  Thin-Disk Oscillator Operated in the
                                                    4 2
                          Positive and Negative Dispersion Regime,” Opt. Lett., 33: 1608–1610, 2008.
                        34.  Giesen, A., Speiser, J., Peters, R., Krankel, C., and Petermann, K., “Thin-Disk
                          Lasers Come of Age,” Photonics Spectra, 41: 52, 2007.
                        35.  Schmid, M., Benchabane, S., Torabi-Goudarzi, F., Abram, R., Ferguson, A. I.,
                          and Riis, E., “Optical In-Well Pumping of a Vertical-External-Cavity Surface-
                          Emitting Laser,” Appl. Phys. Lett., 84: 4860–4862, 2004.
                        36.  Beyertt, S. S., Zorn, M., Kubler, T., Wenzel, H., Weyers, M., Giesen, A., Trankle,
                          G., and Brauch, U., “Optical In-Well Pumping of a Semiconductor Disk Laser
                          with  High  Optical  Efficiency,”  IEEE  J.  Quantum  Electron.,  41:  1439–1449,
                          2005.
                        37.  Beyertt, S.-S., Brauch, U., Demaria, F., Dhidah, N., Giesen, A., Kübler, T., Lorch,
                          S., et al., “Efficient Gallium–Arsenide Disk Laser,” IEEE J. Quantum Electron.,
                          43: 869–875, 2007.
                        38.  Aschwanden, A., Lorenser, D., Unold, H. J., Paschotta, R., Gini, E., and
                          Keller,  U.,  “2.1-W  Picosecond  Passively  Mode-Locked  External-Cavity
                          Semiconductor Laser,” Opt. Lett., 30: 272–274, 2005.
                        39.  Kneubühl, F. K., and Sigrist, M. W., Laser, Stuttgart, Germany: B. G. Teubner,
                          1991.
                        40.  Corzine, S. W., Yan, R. H., and Coldren, L. A., “Theoretical Gain in Strained
                          InGaAs/AlGaAs Quantum Wells Including Valence-Band Mixing Effects,”
                          Appl. Phys. Lett., 57: 2835–2837, 1990.
                        41.  Casey, H. C., Sell, D. D., and Wecht, K. W., “Concentration Depedence of
                          the Absorption Coefficient for n- and p-Type GaAs Between 1.3 and 1.6 eV,”
                          J. Appl. Phys., 46: 250–257, 1974.
                        42.  Marchese,  S.,  Towards  High  Field  Physics  with  High  Power  Thin  Disk  Laser
                          Oscillators, Dissertation at ETH Zurich, Nr. 17583, Hartung-Gorre Verlag,
                          Konstanz, 2008.
                        43.  Brunner, F., Innerhofer, E., Marchese, S. V., Südmeyer, T., Paschotta, R., Usami,
                          T., Ito, H., et al., “Powerful Red-Green-Blue Laser Source Pumped with a
                          Mode-Locked Thin Disk Laser,” Opt. Lett., 29: 1921–1923, 2004.
                        44.  Contag, J., “Modellierung und numerische Auslegung des Yb:YAG Scheibenlasers,”
                          Institut für Strahlwerkzeuge, Stuttgart, Germany: Universität Stuttgart, 2002.
                        45.  Keller, U., “Ultrafast Solid-State Lasers,” Landolt-Börnstein. Laser Physics and
                          Applications. Subvolume B: Laser Systems. Part I., eds. G. Herziger, H. Weber,
                          and R. Proprawe, Heidelberg, Germany: Springer Verlag, 33–167, 2007.
                        46.  Keller, U., “Ultrafast Solid-State Lasers,” Progress in Optics, 46: 1–115, 2004.
                        47.  Keller, U., “Recent Developments in Compact Ultrafast Lasers,” Nature, 424:
                          831–838, 2003.
                        48.  Spence, D. E., Kean, P. N., and Sibbett, W., “60-fsec Pulse Generation from a
                          Self-Mode-Locked Ti:sapphire Laser,” Opt. Lett., 16: 42–44, 1991.
                        49.  Keller, U., ‘tHooft, G. W., Knox, W. H., and Cunningham, J. E., “Femtosecond
                          Pulses from a Continuously Self-Starting Passively Mode-Locked Ti:Sapphire
                          Laser,” Opt. Lett., 16: 1022–1024, 1991.
                        50.  Brabec, T., Spielmann, C., Curley, P. F., and Krausz, F., “Kerr Lens Mode
                          Locking,” Opt. Lett., 17: 1292–1294, 1992.
                        51.  McCumber, D. W., “Einstein Relations Connecting Broadband Emission and
                          Absorption Spectra,” Phys. Rev., 136: 954–957, 1964.
                        52.  Paschotta, R., and Keller, U., “Passive Mode Locking with Slow Saturable
                          Absorbers,” Appl. Phys. B, 73: 653–662, 2001.
   377   378   379   380   381   382   383   384   385   386   387