Page 385 - High Power Laser Handbook
P. 385

354    So l i d - S t at e   La s e r s                                                                       Ultrafast Lasers in Thin-Disk Geometry    355


                        89.  Schibli, T. R., Thoen, E. R., Kärtner, F. X., and Ippen, E. P., “Suppression of
                          Q-Switched Mode Locking and Break-Up into Multiple Pulses by Inverse
                          Saturable Absorption,” Appl. Phys. B, 70: S41–S49, 2000.
                        90.  Südmeyer, T., Maas, D. J. H. C., and Keller, U., “Mode-Locked Semiconductor
                          Disk  Lasers,”  Semiconductor  Disk  Lasers:Physics  and  Technology,  ed.  O.
                          Okhotnikov, Wiley-VCH Verlag KGaA, 2010.
                        91.  Maas, D., MIXSELs: A New Class of Ultrafast Semiconductor Lasers. Dissertation
                          at ETH Zurich, Nr. 18121, Hartung-Gorre Verlag, Konstanz, 2009.
                        92.  Oehler, A. E. H., Südmeyer, T., Weingarten, K. J., and Keller, U., “100 GHz
                          Passively Mode-Locked Er:Yb:glass Laser at 1.5 mm with 1.6-ps Pulses,” Opt.
                          Express, 16: 21930–21935, 2008.
                        93.  Saarinen, E. J., Harkonen, A., Herda, R., Suomalainen, S., Orsila, L., Hakulinen,
                          T., Guina, M., and Okhotnikov, O. G., “Harmonically Mode-Locked VECSELs
                          for Multi-GHz Pulse Train Generation,” Opt. Express, 15: 955–964, 2007.
                        94.  Ippen, E. P., Liu, L. Y., and Haus, H. A., “Self-Starting Condition for Additive-
                          Pulse Modelocked Lasers,” Opt. Lett., 15: 183–185, 1990.
                        95.  Haus, H. A., and Ippen, E. P., “Self-Starting of Passively Mode-Locked Lasers,”
                          Opt. Lett., 16: 1331–1333, 1991.
                        96.  Papadopoulos, D. N., Forget, S., Delaigue, M., Druon, F., Balembois, F., and
                          Georges, P., “Passively Mode-Locked Diode-Pumped Nd:YVO  Oscillator
                                                                       4
                          Operating at an Ultralow Repetition Rate,” Opt. Lett. 28: 1838–1840, 2003.
                        97.  Herriott, D., Kogelnik, H., and Kompfner, R., “Off-Axis Paths in Spherical
                          Mirror Interferometers,” Appl. Opt., 3: 523–526, 1964.
                        98.  Nibbering, E. T. J., Grillon, G., Franco, M. A., Prade, B. S., and Mysyrowicz,
                          A., “Determination of the Inertial Contribution to the Nonlinear Refractive
                          Index of Air, N , and O  by Use of Unfocused High-Intensity Femtosecond
                                           2
                                     2
                          Laser Pulses,” J. Opt. Soc. Am. B, 14: 650–660, 1997.
                        99.  Adair, R., Chase, L. L., and Payne, S. A., “Nonlinear Refractive Index of Optical
                          Crystals,” Phys. Rev. B, 39: 3337–3350, 1989.
                      100.  Hönninger, C., Morier-Genoud, F., Moser, M., Keller, U., Brovelli, L. R., and
                          Harder, C., “Efficient and Tunable Diode-Pumped Femtosecond Yb:glass
                          Lasers,” Opt. Lett., 23: 126–128, 1998.
                      101.  Rivier, S., Mateos, X., Liu, J., Petrov, V., Griebner, U., Zorn, M., Weyers, M.,
                          Zhang, H., et al., “Passively Mode-Locked Yb:LuVO  Oscillator,” Opt. Express,
                                                              4
                          14: 11668–11671, 2006.
                      102.  Zaouter, Y., Didierjean, J., Balembois, F., Lucas Leclin, G., Druon, F., Georges,
                                                        3+
                          P., Petit, J., et al., “47-fs Diode-Pumped Yb :CaGdAlO  Laser,” Opt. Lett., 31:
                                                                4
                          119–121, 2006.
                      103.  Rivier, S., Schmidt, A., Kränkel, C., Peters, R., Petermann, K., Huber, G., Zorn,
                          M., et al., “Ultrashort Pulse Yb:LaSc (BO )  Mode-Locked Oscillator,” Opt.
                                                       3 4
                                                    3
                          Express, 15: 15539–15544, 2007.
                      104.  García-Cortés, A., Cano-Torres, J. M., Serrano, M. D., Cascales, C., Zaldo, C.,
                          Rivier, S., Mateos, X., et al., “Spectroscopy and Lasing of Yb-doped NaY(WO ) :
                                                                              4 2
                          Tunable and Femtosecond Mode-Locked Laser Operation,” IEEE J. Quantum
                          Elect., 43: 758–764, 2007.
                      105.  Südmeyer, T., Kränkel, C., Baer, C. R. E., Heckl, O. H., Saraceno, C. J., Golling,
                          M., Peters, R., et al., “High-Power Ultrafast Thin Disk Laser Oscillators and
                          Their Potential for Sub-100-Femtosecond Pulse Generation,” Appl. Phys. B, 97:
                          281–295, 2009.
                      106.  Hönninger, C., Paschotta, R., Graf, M., Morier-Genoud, F., Zhang, G., Moser,
                          M.,  Biswal,  S., et al.,  “Ultrafast Ytterbium-Doped  Bulk Lasers and Laser
                          Amplifiers,” Appl. Phys. B, 69: 3–17, 1999.
                      107.  Schmidt, A.,  Mateos,  X.,  Petrov,  V.,  Griebner,  U.,  Peters,  R.,  Petermann,
                          K., Huber, G., et al., “Passively Mode-Locked Yb:LuScO  Oscillator” (paper
                                                                  3
                          MB12), Advanced Solid-State Photonics (ASSP), Denver, CO: 2009.
                      108.  Mysyrowicz, A., Hulin, D., Antonetti, A., and Migus, A., “Dressed Excitons
                          in a Multiple-Quantum-Well Structure: Evidence for an Optical Stark-Effect
                          with Femtosecond Response-Time,” Phys. Rev. Lett., 56: 2748–2751, 1986.
   380   381   382   383   384   385   386   387   388   389   390