Page 154 - How To Solve Word Problems In Calculus
P. 154

Solution

                                                                       F

                                                     A     θ
                                                                         B
                                                E             8
                                                    θ  4
                                                                            H
                                                   D
                                                                       C

                                                      G

                                Let θ =   FAB as shown in the figure. By geometry,   EDA = θ
                                as well. The distances |EA|= 4 sin θ, |AF|= 8 cos θ, |ED|=
                                4 cos θ, and |DG|=|FB|= 8 sin θ. The area of the circum-
                                scribed rectangle is the product (|ED|+|DG|)(|EA|+|AF|).
                                Hence


                                   A(θ) = (4 cos θ + 8 sin θ)(4 sin θ + 8 cos θ)
                                                           2
                                                2
                                       = 32 cos θ + 32 sin θ + 80 sin θ cos θ
                                                                    π
                                       = 32 + 40 sin 2θ     0 ≤ θ ≤           sin θ + cos θ = 1
                                                                                2
                                                                                      2
                                                                    2
                                                                              sin 2θ = 2 sin θ cos θ

                                  A (θ) = 80 cos 2θ
                                      0 = 80 cos 2θ
                                      0 = cos 2θ
                                          π
                                    2θ =
                                          2
                                          π
                                      θ =
                                          4



                                Observe that A(θ) is a continuous function. Since A(0) =
                                A(π/2) = 32 and A(π/4) = 72, the maximum area of 72 in       2
                                occurs when θ = π/4.





                                                                                        141
   149   150   151   152   153   154   155   156   157   158   159