Page 116 - Human Inspired Dexterity in Robotic Manipulation
P. 116
114 Human Inspired Dexterity in Robotic Manipulation
[7] M.J. Sawkins, P. Mistry, B.N. Brown, K.M. Shakesheff, L.J. Bonassar, J. Yang, Cell and
protein compatible 3D bioprinting of mechanically strong constructs for bone repair,
Biofabrication 7 (3) (2015) 035004.
[8] Y.K. Seo, H.H. Yoon, K.Y. Song, S.Y. Kwon, H.S. Lee, Y.S. Park, J.K. Park, Increase
in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered
ligaments, J. Orthop. Res. 27 (4) (2009) 495–503.
[9] L. Madden, M. Juhas, W.E. Kraus, G.A. Truskey, N. Bursac, Bioengineered human
myobundles mimic clinical responses of skeletal muscle to drugs, Elife 4 (2015) e04885.
[10] X. Gu, F. Ding, D.F. Williams, Neural tissue engineering options for peripheral nerve
regeneration, Biomaterials 35 (24) (2014) 6143–6156.
[11] B.J. Jank, L. Xiong, P.T. Moser, J.P. Guyette, X. Ren, C.L. Cetrulo, D.A. Leonard,
L. Fernandez, S.P. Fagan, H.C. Ott, Engineered composite tissue as a bioartificial limb
graft, Biomaterials 61 (2015) 246–256.
[12] Z. Xu, Y. Matsuoka, A.D. Deshpande, Crocheted artificial tendons and ligaments for
the anatomically correct testbed (ACT) hand, in: 2015 IEEE International Conference
on Robotics and Biomimetics (ROBIO), IEEE, 2015.
[13] J.J. Crisco, E. Halilaj, D.C. Moore, T. Patel, A.P.C. Weiss, A.L. Ladd, In vivo kine-
matics of the trapeziometacarpal joint during thumb extension-flexion and abduction-
adduction, J. Hand Surg. 40 (2) (2015) 289–296.
[14] W.P. Cooney, E. Chao, Biomechanical analysis of static forces in the thumb during
hand function, J. Bone Joint Surg. 59 (1) (1977) 27–36.
[15] Z. Xu, V. Kumar, Y. Matsuoka, E. Todorov, Design of an anthropomorphic robotic
finger system with biomimetic artificial joints, in: 2012 4th IEEE RAS EMBS Interna-
tional Conference on Biomedical Robotics and Biomechatronics (BioRob), 2012,
pp. 568–574.
[16] Z. Xu, E. Todorov, B. Dellon, Y. Matsuoka, Design and analysis of an artificial finger
joint for anthropomorphic robotic hands, in: 2011 IEEE International Conference on
Robotics and Automation (ICRA), 2011.
[17] ROBOTIS, Available from: http://www.robotis.com/xe/dynamixel_en (Accessed
27 May 2015).
[18] String potentiometer complete kit (am-2674), Available from: http://www.andymark.
com/product-p/am-2674.htm (Accessed 12 May 2015).
[19] S. Venema, B. Hannaford, A probabilistic representation of human workspace for use in
the design of human interface mechanisms, IEEE/ASME Trans. Mechatron. 6 (3)
(2001) 286–294.
[20] D.G. Kamper, E.G. Cruz, M.P. Siegel, Stereotypical fingertip trajectories during grasp,
J. Neurophysiol. 90 (6) (2003) 3702–3710.
[21] Z. Xu, Design and Control of an Anthropomorphic Robotic Hand: Learning Advan-
tages From the Human Body & Brain (Ph.D. thesis), University of Washington, 2015.
[22] Y.S. Choi, T. Deyle, T. Chen, J. Glass, C. Kemp, A list of household objects for robotic
retrieval prioritized by people with ALS, in: IEEE International Conference on Reha-
bilitation Robotics, 2009. ICORR 2009, 2009, pp. 510–517.
[23] M.R. Cutkosky, On grasp choice, grasp models, and the design of hands for
manufacturing tasks, IEEE Trans. Robot. Autom. 5 (3) (1989) 269–279.
[24] Z. Xu, S. Kolev, E. Todorov, Design, optimization, calibration, and a case study of a
3D-printed, low-cost fingertip sensor for robotic manipulation, in: 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), IEEE, 2014, pp. 2749–2756.
FURTHER READING
[25] Wikipedia, Trapezium (bone)—wikipedia, the free encyclopedia. (2014) http://
en.wikipedia.org/w/index.php?title¼Trapezium_(bone)&oldid¼634623814 Accessed
12 May 2015.

