Page 130 - Hybrid Enhanced Oil Recovery Using Smart Waterflooding
P. 130
122 Hybrid Enhanced Oil Recovery using Smart Waterflooding
(A) Oil Recovery Pressure Drop
100 500
Seawater CO 2 Seawater CO 2 Seawater CO 2 Seawater CO 2 Seawater
90 Brine Brine Brine Brine Brine 450
2
1 1 /min cm 3 /min cm /min cm /min cm /min cm /min 400
4
2
4
4
80
0.5
0.5
Cumulative Oil Recovery (%OOIP) 60 300 Pressure Drop Across the core (psi)
3
3
3
3
cm /min cm 3
3
cm 3
cm 3
/min
/min
350
70
250
50
40
200
30
150
20
50
10 100
0 0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Cumulative Volume Injected (PV)
(B)
Oil Recovery Pressure Drop
100 500
Nacl
(5,000 CO 2
90 450
ppm)
Nacl CO 2 (5,000 CO 2 (5,000 400
Nacl
Nacl
CO
(5,000
80
0.5
0.5
2
Cumulative Oil Recovery (%OOIP) 60 cm /min cm /min cm 3 2 /min cm /min cm /min cm /min cm 3 4 /min 300 Pressure Drop Across the core (psi)
ppm)
ppm)
3
cm /min
3
ppm)
cm /min
Nacl
350
70
2
1
4
4
(5,000
3
3
3
3
ppm)
1
50
250
3
40
200
30
20
100
10 150
50
0 0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Cumulative Volume Injected (PV)
FIG. 5.5 The oil recovery and pressure drop across the aged core for the experiments of CO 2 WAG process
using (A) seawater and (B) low-salinity water. (Credit: From Ramanathan, R., Shehata, A. M., & Nasr-El-Din, H.
A. (2016). Effect of rock aging on oil recovery during water-alternating-CO 2 injection process: An interfacial
tension, contact angle, Coreflood, and CT scan study. Paper presented at the SPE improved oil recovery
Conference, Tulsa, Oklahoma, USA, 11e13 April. https://doi.org/10.2118/179674-MS.)