Page 150 - Hybrid Enhanced Oil Recovery Using Smart Waterflooding
P. 150

142       INDEX


          Geochemistry (Continued)      Hybrid chemical enhanced oil   Low-salinity waterflood (LSWF)
             DLVO theory, 52e54         recovery (EOR) (Continued)     (Continued)
             equation of state (EOS), 46  surfactant flood, 87e100         z-potential measurements,
             Henry’s constant, 46e47        cationic surfactant, 87e88      11e14
             interpolation factor, 44e45    cloud point, 88e89            sandstone, 1e8
             linear relation, 49e51         critical micelle concentration  XRD analysis, 14
             reservoir-oil surface speciation,  (CMC), 88e89
               52e54                        expensive zwitterionic surfactants,  M
             United States Geological Survey  87e88                    Mineral dissolution, 32, 33f
               (USGS), 48                   hydrophile-lipophile balance, 88  Mineral reactions, 41e42
           multiphase and multicomponent    Krafft temperature, 88e89  Modified salinity dependency, 44
             system, 40                     optimum salinity gradient, 92  Multicomponent ionic exchange
          Gibbs free energy, 39e40          phase behavior of microemulsion,  (MIE), 5, 29, 29t
          Gouy-Chapman theory, 54            89e91                     Multiple mixing cell (MMC), 117
                                            retention, 91
          H                                 surfactant EOR process, 91e92  N
          Heat loss, 131                Hydrodynamic properties, 129e130,  NEDL model, 56e57
          Henry’s constant, 46e47         130f                         Negatively charged organic
          High-salinity waterflood, 16e17  Hydrolyzed polyacrylamide (HPAM),  components, 31e32
          Hot water injection process,    65                           Newtonian fluid, 66
           131e134                      Hydrophile-lipophile balance, 88
          Hybrid chemical enhanced oil                                 O
           recovery (EOR)               I                              Operating expense (OPEX),
           alkaline flood                Improved oil recovery (IOR), 2e3  69e70
             alkaline-surfactant-polymer flood,  Inductively coupled plasma (ICP),  Optimum salinity gradient, 92
               104e107                    92e93                        Optimum-salinity surfactant flood,
             sodium carbonate, 100      Intrinsic viscosity, 65e66       95
             sodium hydroxide, 100      Ion exchange, 42e43            Organic carboxylic materials, 32
           low salinityeaugmented surfactant  Ironic ions, 66          Original oil in place (OOIP), 8e9
             flood, 92e100                                              Ostwald-de Waele model,
             cationic surfactant, 97e98  K                               66e67
             experiment, 92e98          Krafft temperature, 88e89      Oxidation reduction, 66
             incremental oil recovery, 92e93
             inductively coupled plasma (ICP),  L                      P
               92e93                    Liquefied petroleum gas (LPG), 113  Permeability reduction, 69
             numerical simulations, 98e100  Liquid viscosity, 129      pH, 66
             optimum-salinity surfactant flood,  Low-salinity waterflood (LSWF), 1e8  Phase-analysis light scattering
               95                         field applications, 16e22       (z-PALS), 14e15
             sodium dodecylbenzenesulfonate  carbonate rocks, 22       pH increase, 30e31, 31f
               (SDBS), 94e95                high-salinity waterflood, 16e17  Polymer flood, injectivity test, 76
             systematic coreflooding, 98     pulsed neutron capture (PNC),  Polymeric solutions, 74e76
           low salinityeaugmented polymer    16                        Polymer viscosity, 65e66
             flood (LSPF), 69e87             sandstone, 16e22           Positron emission tomography (PET),
             numerical simulations, 86e87   single-well chemical tracer test  82
             polymer flood, 69e80             (SWCTT), 16e17, 19        Potential-determining ions, 11e13,
             PPG injection, 84e85           target reservoir, 20e21      31e32
           polymer flood/gel treatment,      thermal decay time (TDT), 16  z-potential measurements, 11e14
             65e69                          water chemistry, 18e19     Pseudo-relative permeability, 44
             hardness, 66                 laboratory experiments, 1e15  Pulsed neutron capture (PNC), 16
             hydrolyzed polyacrylamide      acid/base number (AN/BN), 8e9
               (HPAM), 65                   carbonate rocks, 1e8       R
             intrinsic viscosity, 65e66     chromatographic test analyzes,  Reservoir-oil surface speciation,
             ironic ions, 66                 11e13                       52e54
             Newtonian fluid, 66             crude oil/brine/rock (COBR)  Retention, 67e69
             Ostwald-de Waele model, 66e67   system, 2e3               Rising bubble apparatus (RBA),
             oxidation reduction, 66        electrical double layer (EDL), 5e7  117
             permeability reduction, 69     enhanced oil recovery (EOR), 2e3
             pH, 66                         freshwater injection, 1e2  S
             polymer viscosity, 65e66       improved oil recovery (IOR), 2e3  Salinity, 66
             retention, 67e69               multicomponent ionic exchange  Salinity-dependent relative
             salinity, 66                    (MIE), 5                    permeability, 44
             shear rate, 66e67              original oil in place (OOIP), 8e9  Salinity-dependent residual oil
             synergetic effects, 65         potential-determining ion,   saturation, 43e44
             temperature, 66                 11e13                     Salting-in effect, 29e30
   145   146   147   148   149   150   151   152