Page 150 - Hybrid Enhanced Oil Recovery Using Smart Waterflooding
P. 150
142 INDEX
Geochemistry (Continued) Hybrid chemical enhanced oil Low-salinity waterflood (LSWF)
DLVO theory, 52e54 recovery (EOR) (Continued) (Continued)
equation of state (EOS), 46 surfactant flood, 87e100 z-potential measurements,
Henry’s constant, 46e47 cationic surfactant, 87e88 11e14
interpolation factor, 44e45 cloud point, 88e89 sandstone, 1e8
linear relation, 49e51 critical micelle concentration XRD analysis, 14
reservoir-oil surface speciation, (CMC), 88e89
52e54 expensive zwitterionic surfactants, M
United States Geological Survey 87e88 Mineral dissolution, 32, 33f
(USGS), 48 hydrophile-lipophile balance, 88 Mineral reactions, 41e42
multiphase and multicomponent Krafft temperature, 88e89 Modified salinity dependency, 44
system, 40 optimum salinity gradient, 92 Multicomponent ionic exchange
Gibbs free energy, 39e40 phase behavior of microemulsion, (MIE), 5, 29, 29t
Gouy-Chapman theory, 54 89e91 Multiple mixing cell (MMC), 117
retention, 91
H surfactant EOR process, 91e92 N
Heat loss, 131 Hydrodynamic properties, 129e130, NEDL model, 56e57
Henry’s constant, 46e47 130f Negatively charged organic
High-salinity waterflood, 16e17 Hydrolyzed polyacrylamide (HPAM), components, 31e32
Hot water injection process, 65 Newtonian fluid, 66
131e134 Hydrophile-lipophile balance, 88
Hybrid chemical enhanced oil O
recovery (EOR) I Operating expense (OPEX),
alkaline flood Improved oil recovery (IOR), 2e3 69e70
alkaline-surfactant-polymer flood, Inductively coupled plasma (ICP), Optimum salinity gradient, 92
104e107 92e93 Optimum-salinity surfactant flood,
sodium carbonate, 100 Intrinsic viscosity, 65e66 95
sodium hydroxide, 100 Ion exchange, 42e43 Organic carboxylic materials, 32
low salinityeaugmented surfactant Ironic ions, 66 Original oil in place (OOIP), 8e9
flood, 92e100 Ostwald-de Waele model,
cationic surfactant, 97e98 K 66e67
experiment, 92e98 Krafft temperature, 88e89 Oxidation reduction, 66
incremental oil recovery, 92e93
inductively coupled plasma (ICP), L P
92e93 Liquefied petroleum gas (LPG), 113 Permeability reduction, 69
numerical simulations, 98e100 Liquid viscosity, 129 pH, 66
optimum-salinity surfactant flood, Low-salinity waterflood (LSWF), 1e8 Phase-analysis light scattering
95 field applications, 16e22 (z-PALS), 14e15
sodium dodecylbenzenesulfonate carbonate rocks, 22 pH increase, 30e31, 31f
(SDBS), 94e95 high-salinity waterflood, 16e17 Polymer flood, injectivity test, 76
systematic coreflooding, 98 pulsed neutron capture (PNC), Polymeric solutions, 74e76
low salinityeaugmented polymer 16 Polymer viscosity, 65e66
flood (LSPF), 69e87 sandstone, 16e22 Positron emission tomography (PET),
numerical simulations, 86e87 single-well chemical tracer test 82
polymer flood, 69e80 (SWCTT), 16e17, 19 Potential-determining ions, 11e13,
PPG injection, 84e85 target reservoir, 20e21 31e32
polymer flood/gel treatment, thermal decay time (TDT), 16 z-potential measurements, 11e14
65e69 water chemistry, 18e19 Pseudo-relative permeability, 44
hardness, 66 laboratory experiments, 1e15 Pulsed neutron capture (PNC), 16
hydrolyzed polyacrylamide acid/base number (AN/BN), 8e9
(HPAM), 65 carbonate rocks, 1e8 R
intrinsic viscosity, 65e66 chromatographic test analyzes, Reservoir-oil surface speciation,
ironic ions, 66 11e13 52e54
Newtonian fluid, 66 crude oil/brine/rock (COBR) Retention, 67e69
Ostwald-de Waele model, 66e67 system, 2e3 Rising bubble apparatus (RBA),
oxidation reduction, 66 electrical double layer (EDL), 5e7 117
permeability reduction, 69 enhanced oil recovery (EOR), 2e3
pH, 66 freshwater injection, 1e2 S
polymer viscosity, 65e66 improved oil recovery (IOR), 2e3 Salinity, 66
retention, 67e69 multicomponent ionic exchange Salinity-dependent relative
salinity, 66 (MIE), 5 permeability, 44
shear rate, 66e67 original oil in place (OOIP), 8e9 Salinity-dependent residual oil
synergetic effects, 65 potential-determining ion, saturation, 43e44
temperature, 66 11e13 Salting-in effect, 29e30