Page 151 - Hybrid Enhanced Oil Recovery Using Smart Waterflooding
P. 151
INDEX 143
Sandstone reservoirs, 1e8, 16e22 Steam injection, 134e135, 134f Thermal recovery method (Continued)
mechanisms, 27e31 Surface charges, 32e33 hydrodynamic properties, 129e130,
conditions, 36 Surface complexation model, 52e54, 130f
electrical double layer expansion, 53t liquid viscosity, 129
30 Surface complexations, 43 steam injection, 134e135, 134f
fines migration, 27, 28f Surfactant EOR process, 91e92 thermal dynamic properties, 130
multicomponent ionic exchange, Surfactant in situ generation, 27e29, thermal properties, 130
29, 29t 30f Total acid number (TAN), 13e14
pH increase, 30e31, 31f SWCTT. See Single-well chemical Total organic carbon (TOC), 76
salting-in effect, 29e30 tracer test (SWCTT) Transition state theory (TST), 42
surfactant in situ generation, Systematic coreflooding, 98
27e29, 30f U
Saturation index, 42 T United States Geological Survey
Shear rate, 66e67 Temperature, 66 (USGS), 48
Simultaneous water and CO2 gas Thermal decay time (TDT), 16
injection (SWAG), 124e125, Thermal recovery method W
124f Berea sandstone core, 133 Water chemistry, 18e19
Single-well chemical tracer test exothermic reactions, 129 Wettability modification modeling,
(SWCTT), 16e17 heat loss, 131 31e32, 32f, 43e44, 131e133
SmartWater Flood, 13e14 hot water injection, 131e134
Sodium carbonate, 100 low salinityeaugmented hot water X
Sodium dodecylbenzenesulfonate injection, 131e134 XRD analysis, 14
(SDBS), 94e95 wettability modification effect,
Sodium hydroxide, 100 131e133 Z
Solvent phase behavior, 112 hot water injection process, Zwitterionic surfactants, 87e88
133e134