Page 123 - Hybrid-Renewable Energy Systems in Microgrids
P. 123
An overview of control techniques and technical challenge for inverters in micro grid 107
[27] Kahrobaeian, A., Mohamed, Y., 2015. Networked-based hybrid distributed power sharing
and control for islanded microgrid systems. IEEE Trans. Power Electron. 30, 603–617.
[28] Guerrero, J.M., Hang, L., Uceda, J., 2008. Control of distributed uninterruptible power
supply systems. IEEE Trans. Ind. Electron. 55, 2845–2859.
[29] Tuladhar, A., Hua, J., Unger, T., Mauch, K., 2000. Control of parallel inverters in distrib-
uted AC power systems with consideration of line impedance effect. IEEE Trans. Ind.
Appl. 36, 131–138.
[30] Zhao, B., Zhang, X., Chen, J., 2012. Integrated microgrid laboratory system. IEEE Trans.
Power Syst. 27, 2175–2185.
[31] Zamora, R., Srivastava, A.K., 2010. Controls for microgrids with storage: review, chal-
lenges, and research needs. Renew. Sust. Energy Rev. 14, 2009–2018.
[32] Vandoorn, T.L., Renders, B., Degroote, L., Meersman, B., Vandevelde, L., 2011. Active
load control in islanded microgrids based on the grid voltage. IEEE Trans. Smart Grid 2,
139–151.
[33] Vandoorn, T.L., Meersman, B., Degroote, L., Renders, B., Vandevelde, L., 2011. A control
strategy for islanded microgrids with DC-link voltage control. IEEE Trans. Power Del. 26,
703–713.
[34] Lidula, N.W.A., Rajapakse, A.D., 2011. Microgrids research: a review of experimental
microgrids and test systems. Renew. Sust. Energy Rev. 15, 186–202.
[35] Vandoorn, T.L., Meersman, B., Kooning, J.D.M.D., Vandevelde, L., 2012. Analogy be-
tween conventional grid control and islanded microgrid control based on a global DC link
voltage droop. IEEE Trans. Power Del. 27, 1405–1414.
[36] Bidram, A., Davoudi, A., 2012. Hierarchical structure of microgrids control system. IEEE
Trans. Smart Grid 3, 1963–1976.
[37] Palizban, O., Kauhaniemi, K., 2015. Hierarchical control structure in microgrids with dis-
tributed generation: island and grid-connected mode. Renew. Sust. Energy Rev. 44, 797–
813.
[38] Moayedi, S., Davoudi, A., 2016. Distributed tertiary control of DC microgrid clusters.
IEEE Trans. Power Electron. 31, 1717–1733.
[39] Guerrero, J.M., Chandorkar, M., Lee, T.L., Loh, P.C., 2013. Advanced control architec-
tures for intelligent microgrids—part I: decentralized and hierarchical control. IEEE Trans.
Ind. Electron. 60, 1254–1262.
[40] Lu, X., Guerrero, J.M., Sun, K., Vasquez, J.C., Teodorescu, R., Huang, L., 2014. Hierar-
chical control of parallel AC-DC converter interfaces for hybrid microgrids. IEEE Trans.
Smart Grid 5, 683–692.
[41] Mehrizi-Sani, A., Iravani, R., 2010. Potential-function based control of a microgrid in is-
landed and grid-connected modes. IEEE Trans. Power Syst. 25, 1883–1891.
[42] Freitas, W., Vieira, J.C., Morelato, A., Da Silva, L.C., Da Costa, V.F., Lemos, F.A., 2006.
Comparative analysis between synchronous and induction machines for distributed gen-
eration applications. IEEE Trans. Power Syst. 21 (1), 301–311.
[43] Teimourzadeh, S., Aminifar, F., Davarpanah, M., Guerrero, J.M., 2016. Macroprotections
for microgrids: toward a new protection paradigm subsequent to distributed energy re-
source integration. IEEE Ind. Electron Mag. 10 (3), 6–18.
[44] Teimourzadeh, S., Davarpanah, M., Aminifar, F., Shahidehpour, M., 2016. An adaptive
auto-reclosing scheme to preserve transient stability of microgrids. IEEE Trans. Smart
Grid.
[45] Iov, F., Hansen, A.D., Sorensen, P.E., Cutululis, N.A., 2007. Mapping of Grid Faults
and Grid Codes. Risoe National Laboratory, Technical University of Denmark,
Roskilde, Denmark, Technical Report.