Page 127 - Hybrid-Renewable Energy Systems in Microgrids
P. 127

Study of control strategies of power electronics during faults in microgrids    111

           where α and β represent the two phases in stationary frame. Distributed VSIs are gen-
           erally interfaced with the network through a three-wire connection, which does not
           provide zero-sequence current. Therefore, zero-sequence components are ignored in
           the following analysis. Then, the instantaneous active power p and the instantaneous
           reactive power q are defined according to instantaneous power theory [2]:

                   vi
                p =⋅ =  v i +  v i                                          (7.3)                                       p=v⋅i=vαiα+vβiβ
                        αα
                              ββ
                q = v ⋅ =  v i −  v i                                       (7.4)                                       q=v⊥⋅i=vβiα-vαiβ
                      i
                         βα
                    ⊥
                               αβ
                         T
                                    T
           where v = [v α  v β ]  and i = [i α  i β ]  are the voltage and current vectors, respectively. The
           operator “·” represents the dot product of vectors and the subscript “ ⊥ ” denotes an                    ⊥
           orthogonal version of the original vector, which can be obtained by:
                      0  1      0  1    v α      v β  
                v =          v =          =                         (7.5)                                       v⊥=01−10v=01−10 vαvβ=vβ
                 ⊥
                       − 10        − 10       v β        − v α                                          −vα

              As the voltage and current can be regarded a superposition of symmetrical compo-
           nents, the instantaneous power shown in Eqs. (7.3) and (7.4) are rewritten as:

                                                            −
                              v +
                                        +
                                           −
                                                        +
                                   −
                                                      +
                p = v i +  v i ( α +  v ) ( + i ) +  v ( β +  + v ) ( + i )  (7.6)                                      p=vαiα+vβiβ=vα++vα−iα++
                                     +
                            =
                                                    −
                                       i
                                                        i
                                           α
                         ββ
                                                        β
                                   α
                                       α
                    αα
                                                    β
                                                            β
                                                                                                                        iα−+vβ++vβ−iβ++iβ−
                                   −
                                     +
                              v +
                                       +
                            =
                                               v +
                                             −
                                           −
                                                            −
                                                    −
                                                        +
                q = v i −  v i ( β +  v ) ( +  i ) ( α +  v ) +  i ( + i )  (7.7)                                       q=vβiα−vαiβ=vβ++vβ−iα++iα−−vα++v
                                       i
                                       α
                                   β
                                                        β
                                                           β
                                                   α
                                          α
                         αβ
                    βα
                                                                                                                        α−iβ++iβ−
           where superscripts ‘+’ and ‘−’ represent positive- and negative-sequence compo-
           nents, respectively. By expanding Eqs. (7.6) and (7.7) and rearranging different terms
           according to sequence components, there are:
                                              −+
                                         +−
                         ++
                    ++
                                                   +−
                              −−
                                                        −+
                p = v i + v i + v i + v i + v i + v i + v i +  v i
                                   −−
                    αα
                                                   ββ
                         ββ
                                                        ββ
                                   ββ
                              αα
                                        αα    αα                            (7.8)                                       p=vα+iα++vβ+iβ++vα−iα−+vβ−iβ−⊥v


                                                -
                                               +
                          +
                           +
                         vi ⋅+ vi ⋅ --        vi ⋅+ vi ⋅ -  +
                                                                                                                        +⋅i++v-⋅i-+vα+iα−+vα−iα++vβ+iβ−+vβ-
                                                                                                                        −iβ+⊥v+⋅i-+v-⋅i+
                q = v i − v i + v i − v i + v i + v i − v i −  v i
                    ++
                         ++
                                        +−
                                                        −+
                                              −+
                                   −−
                                                   +−
                              −−
                                                        αβ
                                   αβ
                              βα
                         αβ
                    βα
                                                  αβ
                                        βα   βα                             (7.9)                                       q=vβ+iα+−vα+iβ++vβ−iα−−vα−iβ−⊥v⊥


                          +  +  vi ⋅  -       +  -  vi ⋅  +
                             −
                                                  -
                                              ⊥
                          ⊥
                         vi ⋅+ ⊥              vi ⋅+ ⊥                                                                   +⋅i++v⊥−⋅i-+vβ+iα−+vβ−iα+−vα+iβ−-
           where voltage and current vectors expressed in stationary frame are:                                         −vα−iβ+⊥v⊥+⋅i-+v⊥-⋅i+
                      v +      v +      v −      v −  
                v +  =    α   ; v +  =   β   ; v − =   α   ; v −  =   β    (7.10)                               v+=vα+vβ+; v⊥+=vβ+−vα+; v− = vα−vβ−;  v⊥− = vβ
                      v +    ⊥    −v +      v −    ⊥    −v −  
                      β        α        β        α                                                              −−vα−
   122   123   124   125   126   127   128   129   130   131   132