Page 128 - Hybrid-Renewable Energy Systems in Microgrids
P. 128

112                                 Hybrid-Renewable Energy Systems in Microgrids


                   i +      i −  
             i +  =   α   ; i −  =   α                              (7.11)
 i+=iα+iβ+; i−=iα−iβ−
                   i +      i −  
                   β       β  
           With only fundamental frequency components considered, the voltage and current
         expressed in stationary reference frame can be transformed into synchronous refer-
         ence frame using Park transformation:

 vd+vq+=coswtsinwt−sinwtcoswtvα+v    v +      cos  ω ( t )  sin  ω ( t )     v +  
 β+;  vd−vq− = cos−wtsin−wt−sin−w-    d   =      α   ;
               v +      −sin  ω ( t ) cos  ω ( t )    v +  
 tcos−wtvα−vβ−    q                     β                         (7.12)
               v −     cos (− ω ) t  sin (− ω ) t     v −  
               d                          α  
                    =
               v −     −sin (− ω ) t  cos (− t  v −  
                                      ω )  
               q                          β  
               i +     cos  ω ( t )  sin  ω ( t )     i +  
               d                       α    ;
                   =
               i q +     −sin  ω ( t ) cos  ω ( t )    i + β  
 id+iq+ = coswtsinwt− sinwtcoswtiα-                               (7.13)
 +iβ+;  id−iq−=cos−wtsin−wt−sin−wt     i d −       cos (− ω ) t  sin (− ω ) t     i α −   
                                           
                                      ω )  
 cos−wtiα−iβ−    i −   =    −sin (− ω ) t  cos (− t  i −  
               q                          β  

         where subscripts ‘d’ and ‘q’ respectively denote d- and q-axes in synchronous refer-
         ence frame. By substituting Eqs. (7.12) and (7.13) into Eqs. (7.6) and (7.7), respec-
         tively, the instantaneous power can be further expressed in synchronous reference
         frame as:


                                 t)
                                         (
                              (
              p =  P   + P cos2ω +  P sin2ω  t)


                                     s2
                         c2
 p=P¯⊥v+⋅i++v−⋅i− + Pc2cos  vi⋅+ vi ⋅  −                                (7.14)
                   +
                     −
                 +
                                  −
                                 +
                                    −
                                      +
 2wt+Ps2sin2wt⊥v+⋅i−+v−⋅i+      vi⋅+ vi ⋅
                                             t)
                                          (
                                  t)
                              (
             q =   Q   + Q cos2ω +   Q sin2ω



                                      s2
                          c2
 q = Q ¯ ⊥ v⊥+ ⋅ i++v⊥ − ⋅ i −  +  +  −  −                              (7.15)
                    vi
                                 +
                                   −
                                    vi
                 ⊥
                vi⋅+ ⊥ ⋅         vi⋅+ ⊥ − ⋅  +
                                 ⊥
 + Q c 2 cos 2 w t + Q s 2 sin -
 2wt⊥v⊥+⋅i−+v⊥−⋅i+  where
                 3
                                   −−
                              −−
                         ++
 P¯=32vd+id++vq+iq++vd−id  P =  v i (  ++  + v i + v i + v i )          (7.16)
                 2  dd   qq   dd   qq
 −+vq−iq−
                  3
                          −+
                               +−
                                     +−
 Pc2=32vd−id++vq−iq++vd+  P =  v i (  −+  + v i + v i + v i )           (7.17)
                     d d
              c2
                               d d
                          q q
                                    q q
 id−+vq+iq−       2
   123   124   125   126   127   128   129   130   131   132   133