Page 660 - Industrial Power Engineering and Applications Handbook
P. 660

Surge arresters: application and selection  18/625
        Surge transference through a transformer       V,,,  =  switching surge residual voltage of the arrester -
                                                             kV
        (i) Electrostatic transference                  Z, =  surge impedance of the affected line
                                                         T =  travelling time of the switching surge in ,us
                                              (1 8.7a)   IZ  =  number of consecutive discharges
                                                       Surge protection of motors
         Vi,.  =  voltage of  surge transference
         C,, =  lumped capacitance between the primary and the   For long-duration switching surges,
              secondary windings
         C, =  lumped capacitance of  the lower voltage side   Surge frequency.  f,  = ~  10'   kHL   (18.11)
          V, =  prospective voltage surge on the primary side            4t,
            =  a factor to account for the power frequency voltage   r, = rise time of the FOW in pus
              already existing when  the  surge occurs
        Dampened  \urge  transference  to  account  for the  capa-
        citance C of cables and terminal equipment.    Further reading
         V =     CP     V, ' I'              (1 8.7b)
             c,, + c, i C                               I  ABB,  India,  Srlrctiori  Guide ,%r ABB  HV  Suixe Awc.\fer.\.
                                                          Zinc Oxide Surge Arrester. Technical Information Publ. SESWG/
                                                          A  2300 E. Edition  2.  1991-02.
        (ii) Electromagnetic transference               2  Brown.  P.B.  and  Miske. S.A.. Jr.  'Application  of  zinc  oxide
                                                          station  class arresters',  Missouri Valley  Electric  Association
                                                          Engineering Conference, Kansas City. Missouri,  13 April  1978.
                                              ( 18.8)   3  Cotton.  H.,  'The  transmission  and  distribution  of electrical
                                                          energy  - protection  against overvoltages'
          11  = factor for power frequency voltage      1 Csuros L., Overvoltage protection.
          q = response factor of the lower voltage circuit to the   5  Electricity  Council  (ed.).  Power  System  Protection.  Peter
             arriving long-duration surges                Peregrinus.  Stevenage.
          I' = a  factor  that  will  depend  upon  the  transformer   6  General Electric Company. USA. ~r[r~i,\f/ti,\\;~~/i, October  197 1
                                                          (overvoltage protection).
             connections                                7  Greanwood, A,. Elecwiccrl  Trufi.siuit,\ r/r  Poiwt- SJ \tcwi,r, John
          II  = transformation ratio of  the transformer  ( V,/V2).   Wiley. New York.
                                                        8  Lundquist.  J.,  Stenstroni,  L., Schei. A. and Hansen.  B..  'New
        Selecting the protective level of an arrester     method  for measurement of  the resibti\ e  leakage  currents  01
                                                          metal oxide surge arre\tern  in service'. 89 SM 817-8 PWRD,
        Protectihe distance                               IEEE ( 1989).
                                                        9  Ozawa. .I.. Mizukoshi, A,. Maruyaiiia.  S.. Nakano.  K.. Saito
          v, =  \',<,  + s ' 2  T             ( 18.9)     K., St Jean, G., Latour. Y.. and Petit. A,. 'Pre5surc reliefdmign
                                                          and performance of  metal oxide surge ai-resters'- IEEE- 1985.
          V, =  actual surge voltage at the equipment   IO  Sakahaug, E.C. and  Kresge.  J.S. and  Miske.  SA. Jr.  'A new
          .S =  r,r,r,v. of the  incoming wave in kV/ps   concept in  station arrester desien'.
          T =  travelling time of the surge, to reach the equipment   11  Shirakawa. S., Endo, F., Kitajitna.  H.. Kobayashi.  S.. Kurita,
              from  the arrester terminals                K..  Goto. K.. and Sakai. M.. 'Maintenance of surge arrester by
                                                          a portable arrater leakage current detector'. /E€€ Trcirirtrc/ioii.c
                                                          oti  Poivrr De/iwn, 3. No. 3. July  ( 1988).
        Energy capability                              17  Society of Power tngineers (India) Bomba!  Chapter. Seininar
                                                          on  EHV  Substations, 24 June  1994.
                                               8. IO)   13  Thoren B., 'Insulation coordination for \y\tem  \(>Itage.: of  -57
                                                          to 800 kV', All India  EHV Forum  1979.
                                                       13  Walsh, G.W.. 'A review of lightning protection  and grounding
          CV  =  energy absorbed in  kW-s or kJ           practices',  IEEE 7ruti.vrrc~tion.s or? /irdit,\ft-\  App/i<,u/ioii \.  1 A-9,
          V, =  prospective s*itching  surgc crest voltage  - kV   No. 2.  March/April (1973)
   655   656   657   658   659   660   661   662   663   664   665