Page 291 - Industrial Process Plant Construction Estimating and Man Hour Analysis
P. 291

Appendix B









             Statistical and mathematical

             formulas



             Statistical formulas for the mean, variance, and standard deviation
             Mean: y¼y1+y2+⋯+yn; Σ y/n
                       2        2       2             2
             Variance:S ¼(y1 Y) +(Y2+Y )+⋯ +(Yn Y) /n 1
                                    2         2
                                                ð
                                   s ¼ Σ yi yð  Þ = n 1Þ
                                                2
                                         2
             Standard-deviation:S¼[(y1 Y) +Y2+Y )+⋯+(Yn Y) /n 1]½
                                                             2
                                     h               i
                                            Þ = n 1Þ ½
                                             2
                                  s ¼ Σ yi yð  ð
             Straight line graph: handle and install large bore standard pipe
                                                    ð
                                            ð
                            y ¼ a + bx; Y ¼ a+ y y1Þ= x x1Þ xðÞ
                where
                y¼dependent variable
                a¼intercept value along the y-axis at x ¼ 0
                b¼slope or the length of the rise divided by the length of the run;
                                b¼(y y1)/(x x1)
                x¼independent or control variable
                                                                 P
             Mathematical expectation: E(X)¼p1X1+p2X2+⋯+ρkXk¼      ρX
             Normal distribution:Y¼1/(σ(2pi) 1/2)e  1/2(X μ) /σ 2
                                                          2
                                               ^
                                          ^
                where μ¼mean, σ¼standard deviation, pi¼3.1416…, and e¼2.71828….
                                                2
             Standard form: Y¼1/(2pi 1/2)e  1/2(z )
                                   ^
                                         ^
                z is normally distributed with mean 0 and variance 1
             Central limit theorem:W i ¼((x) i  μ)/(σ/k 1/2)
                                                ^
                N(0,1) in the limit as k approaches infinity


                                                                         271
   286   287   288   289   290   291   292   293   294   295   296