Page 297 - Industrial Wastewater Treatment, Recycling and Reuse
P. 297

Reorienting Waste Remediation Towards Harnessing Bioenergy  271


              Kobayashi, T., Xu, K.Q., Li, Y.Y., Inamori, Y., 2012. Effect of sludge recirculation on char-
                 acteristics of hydrogen production in a two-stage hydrogenemethane fermentation pro-
                 cess treating food wastes. Int. J. Hydrogen Energ. 37 (7), 5602–5611.
              Kongjan, P., O-Thong, O., Angelidaki, I., 2011. Biohydrogen production from desugared
                 molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic
                 sludge granules. Int. J. Hydrogen Energ. 36, 14261–14269.
              Kraemer, J.T., Bagley, D.M., 2007. Improving the yield from fermentative hydrogen pro-
                 duction. Biotechnol. Lett. 29, 685–695.
              Lakshmi Devi, R., Muthukumar, K., 2010. Enzymatic saccharification and fermentation of
                 paper and pulp industry effluent for biohydrogen production. Int. J. Hydrogen Energ.
                 35, 3389–3400.
              Lalit Babu, V., Venkata Mohan, S., Sarma, P.N., 2009. Influence of reactor configuration on
                 fermentative hydrogen production during wastewater treatment. Int. J. Hydrogen
                 Energ. 34, 3305–3312.
              Lee, S.Y., 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49, 1–14.
              Lee, Y.K., 2004. Algal nutrition: Heterotrophic carbon nutrition. In: Richmond, A. (Ed.),
                 Handbook of Microalgal Culture. Biotechnology and Applied Phycology. Blackwell
                 Publishing, Oxford, pp. 116–124.
              Lee, H.S., Rittmann, B.E., 2010a. Characterization of energy losses in an upflow single-
                 chamber microbial electrolysis cell. Int. J. Hydrogen Energ. 35, 920–927.
              Lee, H.S., Rittmann, B.E., 2010b. Significance of biological hydrogen oxidation in a
                 continuous single-chamber microbial electrolysis cell. Environ. Sci. Technol.
                 44, 948–954.
              Lee, K., Lee, C.G., 2002. Nitrogen removal from wastewaters by microalgae without con-
                 suming organic carbon sources. J. Microbiol. Biotechnol. 12, 979–985.
              Lee, Y.J., Miyahara, T., Noike, T., 2001. Effect of iron concentration on hydrogen fermen-
                 tation. Bioresour. Technol. 80, 227–231.
              Lee, H.S., Parameswaran, P., Kato-Marcus, A., Torres, C.I., Rittman, B.E., 2008. Evalua-
                 tion of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing ferment-
                 able and non-fermentable substrates. Water Res. 42, 1501–1510.
              Lee, H.S., Torres, C.I., Rittmann, B.E., 2009. Effects of substrate diffusion and anode poten-
                 tial on kinetic parameters for anode-respiring bacteria. Environ. Sci. Technol.
                 43, 7571–7577.
              Lefebvre, O., Mamun, A., Ng, H.Y., 2008. A microbial fuel cell equipped with a biocathode
                 for organic removal and denitrification. Water Sci. Technol. 58, 881–885.
              Lenin Babu, M., Venkata Mohan, S., 2012. Influence of graphite flake addition to sediment
                 on electrogenesis in a sediment-type fuel cell. Bioresour. Technol. 110, 206–213.
              Lenin Babu, M., Sarma, P.N., Mohan, S.V., 2013a. Microbial electrolysis of synthetic
                 acids for biohydrogen production: influence of biocatalyst pretreatment and pH with
                 the function of applied potential. J. Microb. Biochem. Technol. S6, http://dx.doi.
                 org/10.4172/1948-5948.
              Lenin Babu, M., Venkata Subhash, G., Sarma, P.N., Venkata Mohan, S., 2013b. Bio-
                 electrolytic conversion of acidogenic effluents to biohydrogen: an integration strategy
                 for higher substrate conversion and product recovery. Bioresour. Technol.
                 133, 322–331.
              Li, Y.C., Wu, S.Y., Chu, C.Y., Huang, H.C., 2011. Hydrogen production from mushroom
                 farm waste with a two-step acid hydrolysis process. Int. J. Hydrogen Energ. 36 (21),
                 14245–14251.
              Li, F.W., Pei, C., Ai, P.H., Chi, M.L., 2012a. The feasibility of biodiesel production by
                 microalgae using industrial wastewater. Bioresour. Technol. 113, 14–18.
              Li, Y.C., Chu, C.Y., Wu, S.Y., Tsai, C.Y., Wang, C.C., Hung, C.H., Lin, C.Y., 2012b.
                 Feasible pretreatment of textile wastewater for dark fermentative hydrogen production.
                 Int. J. Hydrogen Energ. 37, 15511–15517.
   292   293   294   295   296   297   298   299   300   301   302