Page 292 - Industrial Wastewater Treatment, Recycling and Reuse
P. 292
266 Industrial Wastewater Treatment, Recycling, and Reuse
Akaraonye, E., Keshavarz, T., Roy, I., 2010. Production of polyhydroxyalkanoates: the
future green materials of choice. J. Chem. Technol. Biotechnol. 85, 732–743.
Albuquerque, M.G.E., Martino, V., Pollet, E., Ave ´rous, L., Reis, M.A.M., 2011. Mixed cul-
ture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich
streams: effect of substrate composition and feeding regime on PHA productivity, com-
position and properties. J. Biotechnol. 151, 66–76.
Allakhverdiev, S.I., Thavasi, V., Kreslavski, V.D., Zharmukhamedov, S.K., Klimov, V.V.,
Ramakrishna, S., et al., 2010. Photosynthetic hydrogen production. J. Photochem.
Photobiol. 11, 87–99.
Amulya, K., Venkateswar Reddy, M., Venkata Mohan, S., 2014. Acidogenic spent wash val-
orization through polyhydroxyalkanoate (PHA) synthesis coupled with fermentative
biohydrogen production. 158, 336–342.
Anderson, A.J., Dawes, E.A., 1990. Occurrence, metabolism, metabolic role, and industrial
uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54 (4), 450–472.
Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A., Domı ´guez-Espinosa, R.,
2004. Production of bioenergy and biochemicals from industrial and agricultural waste-
water. Trends Biotechnol. 22, 477–485.
Balat, M., 2010. Thermochemical routes for biomass-based hydrogen production. Energ.
Source. Part A 32 (15), 1388–1398.
Beccari,M.,Bertin,L.,Dionisi,D.,Fava,F.,Lampis,S.,Majone,M.,etal.,2009.Exploitingolive
oilmill effluents as a renewable resource for production of biodegradable polymers through
a combined anaerobic–aerobic process. J. Chem. Technol. Biotechnol. 84, 901–908.
Beer, L.L., Boyd, E.S., Peters, J.W., Posewitz, M.C., 2009. Engineering algae for biohydro-
gen and biofuel production. Curr. Opin. Biotechnol. 20, 264–271.
Bengtsson, S., Werker, A., Christensson, M., Welander, T., 2008. Production of polyhy-
droxyalkanoates by activated sludge treating a paper mill wastewater. Bioresour. Tech-
nol. 99, 509–516.
Bengtsson, S., Pisco, A.R., Johansson, P., Lemos, P.C., Reis, M.A.M., 2010. Molecular
weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar
molasses by open mixed cultures. J. Biotechnol. 147, 172–179.
Bisaillon, A., Turcot, J., Hallenbeck, P.C., 2006. The effect of nutrient limitation on
hydrogen production by batch cultures of Escherichia coli. Int. J. Hydrogen Energ.
31, 1504–1508.
Bond, D.R., Holmes, D.E., Tender, L.M., Lovley, D.R., 2002. Electrode-reducing micro-
organisms harvesting energy from marine sediments. Science 295, 483–485.
Boyle, N.R., Morgan, J.A., 2009. Flux balance analysis of primary metabolism in Chlamy-
domonas reinhardtii. BMC Syst. Biol. 3, 4.
Brennan, L., Owende, P., 2010. Biofuels from microalgae—a review of technologies for pro-
duction, processing, and extractions of biofuels and co-products. Renew. Sustain. Energ.
Rev. 14, 557–577.
Brown, T.M., Duan, P., Savage, P.E., 2010. Hydrothermal liquefaction and gasification of
Nannochloropsis sp. Energ. Fuel. 24, 3639–3646.
Call, D., Logan, B.E., 2008. Hydrogen production in a single chamber microbial electrolysis
cell lacking a membrane. Environ. Sci. Technol. 42 (9), 3401–3406.
Call, D., Merrill, M.D., Logan, B.E., 2009. High surface area stainless steel brushes as
cathodes in microbial electrolysis cells (MECs). Environ. Sci. Technol. 43 (6),
2179–2183.
Cao, G.L., Guo, W.Q., Wang, A.J., Zhao, L., Xu, C.J., Zhao, Q., Ren, N., 2012. Enhanced
cellulosic hydrogen production from lime-treated cornstalk wastes using thermophilic
anaerobic microflora. Int. J. Hydrogen Energ. 37, 13161–13166.
Chae, K.J., Choi, M.J., Lee, J.W., Kim, K.Y., Kim, I.S., 2009. Effect of different substrates
on the performance, bacterial diversity, and bacterial viability in microbial fuel cells.
Bioresour. Technol. 100, 3518–3525.