Page 293 - Industrial Wastewater Treatment, Recycling and Reuse
P. 293
Reorienting Waste Remediation Towards Harnessing Bioenergy 267
Chakkrit, S., Plangklang, P., Imai, T., Reungsang, A., 2011. Co-digestion of food waste and
sludge for hydrogen production by anaerobic mixed cultures: statistical key factors opti-
mization. Int. J. Hydrogen Energ. 36 (21), 14227–14237.
Chandra, R., Venkata Mohan, S., 2011. Microalgal community and their growth conditions
influence biohydrogen production during integration of dark-fermentation and photo-
fermentation processes. Int. J. Hydrogen Energ. 36 (19), 12211–12219.
Chandra, R., Venkata Subhash, G., Venkata Mohan, S., 2012. Mixotrophic operation of
photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the
light dependent bioelectrogenic activity. Bioresour. Technol. 109, 46–56.
Chandra, R., Rohit, M.V., Swamy, Y.V., Venkata Mohan, S., 2014. Regulatory function of
organic carbon supplementation during growth and nutrient stress phases of mixotrophic
microalgae cultivation. Bioresour. Technol. 36, 1221–1221.
Chandrasekhar, K., Venkata Mohan, S., 2012. Bio-electrochemical remediation of real field
petroleum sludge as an electron donor with simultaneous power generation facilitates bio-
transformationofPAH:effectofsubstrateconcentration.Bioresour.Technol.110,517–525.
Chang, R.L., Ghamsari, L., Manichaikul, A., Hom, E.F.Y., Balaji, S., Fu, W., et al., 2011.
Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal
metabolism. Mol. Syst. Biol. 7, 1–13.
Chen, F., Johns, M.R., 1996. Heterotrophic growth of Chlamydomonas reinhardtii on acetate
in chemostat culture. Process Biochem. 31, 601–604.
Chen, S.D., Lee, K.S., Lo, Y.C., Chen, W.M., Wu, J.F., Lin, C.Y., 2008. Batch and con-
tinuous biohydrogen production from starch hydrolysate by Clostridium species. Int. J.
Hydrogen Energ. 33 (7), 1803–1812.
Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., Chang, J.S., 2011. Cultivation, photobioreac-
tor design and harvesting of microalgae for biodiesel production: a critical review. Bior-
esour. Technol. 102, 71–81.
Cheng, S., Logan, B.E., 2007. Sustainable and efficient biohydrogen production via electro-
hydrogenesis. Proc. Natl Acad. Sci. USA. 104, 18871–18873.
Cheng, H.H., Whang, L.M., Wu, C.W., Chung, M.C., 2012. A two-stage bioprocess for
hydrogen and methane production from rice straw bioethanol residues. Bioresour.
Technol. 113, 23–29.
Chinnasamy, S., Bhatnagar, A., Hunt, R.W., Das, K.C., 2010. Microalgae cultivation in a
wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Tech-
nol. 101, 3097–3105.
Chiranjeevi, P., Mohanakrishna, G., Venkata Mohan, S., 2012. Rhizosphere mediated elec-
trogenesis with the function of anode placement for harnessing bioenergy through CO 2
sequestration. Bioresour. Technol. 124, 364–370.
Chiranjeevi, P., Chandra, R., Venkata Mohan, S., 2013. Ecologically engineered submerged
and emergent macrophyte based system: an integrated eco-electrogenic design for har-
nessing power with simultaneous wastewater treatment. Ecol. Eng. 51, 181–190.
Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306.
Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., Lin, C.S., 2008. Reduction of
CO 2 by a high-density culture of Chlorella sp. in a semi-continuous photobioreactor.
Bioresour. Technol. 99, 3389–3396.
Choi, J.I., Lee, S.Y., 1999. High-level production of poly(3-hydroxybutyrate-co-
3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl. Environ.
Microbiol. 65, 4363–4368.
Choi, D.W., Chipman, D.C., Bents, S.C., Brown, R.C., 2010. A techno-economic analysis
of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified
biomass. Appl. Biochem. Biotechnol. 160, 1032–1046.
Chou, C.H., Han, C.L., Chang, J.J., Lay, J.J., 2011. Co-culture of Clostridium beijerinckii L9,
Clostridium butyricum M1 and Bacillus thermoamylovorans B5 for converting yeast waste into
hydrogen. Int. J. Hydrogen Energ. 36 (21), 13972–13983.