Page 293 - Industrial Wastewater Treatment, Recycling and Reuse
P. 293

Reorienting Waste Remediation Towards Harnessing Bioenergy  267


              Chakkrit, S., Plangklang, P., Imai, T., Reungsang, A., 2011. Co-digestion of food waste and
                 sludge for hydrogen production by anaerobic mixed cultures: statistical key factors opti-
                 mization. Int. J. Hydrogen Energ. 36 (21), 14227–14237.
              Chandra, R., Venkata Mohan, S., 2011. Microalgal community and their growth conditions
                 influence biohydrogen production during integration of dark-fermentation and photo-
                 fermentation processes. Int. J. Hydrogen Energ. 36 (19), 12211–12219.
              Chandra, R., Venkata Subhash, G., Venkata Mohan, S., 2012. Mixotrophic operation of
                 photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the
                 light dependent bioelectrogenic activity. Bioresour. Technol. 109, 46–56.
              Chandra, R., Rohit, M.V., Swamy, Y.V., Venkata Mohan, S., 2014. Regulatory function of
                 organic carbon supplementation during growth and nutrient stress phases of mixotrophic
                 microalgae cultivation. Bioresour. Technol. 36, 1221–1221.
              Chandrasekhar, K., Venkata Mohan, S., 2012. Bio-electrochemical remediation of real field
                 petroleum sludge as an electron donor with simultaneous power generation facilitates bio-
                 transformationofPAH:effectofsubstrateconcentration.Bioresour.Technol.110,517–525.
              Chang, R.L., Ghamsari, L., Manichaikul, A., Hom, E.F.Y., Balaji, S., Fu, W., et al., 2011.
                 Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal
                 metabolism. Mol. Syst. Biol. 7, 1–13.
              Chen, F., Johns, M.R., 1996. Heterotrophic growth of Chlamydomonas reinhardtii on acetate
                 in chemostat culture. Process Biochem. 31, 601–604.
              Chen, S.D., Lee, K.S., Lo, Y.C., Chen, W.M., Wu, J.F., Lin, C.Y., 2008. Batch and con-
                 tinuous biohydrogen production from starch hydrolysate by Clostridium species. Int. J.
                 Hydrogen Energ. 33 (7), 1803–1812.
              Chen, C.Y., Yeh, K.L., Aisyah, R., Lee, D.J., Chang, J.S., 2011. Cultivation, photobioreac-
                 tor design and harvesting of microalgae for biodiesel production: a critical review. Bior-
                 esour. Technol. 102, 71–81.
              Cheng, S., Logan, B.E., 2007. Sustainable and efficient biohydrogen production via electro-
                 hydrogenesis. Proc. Natl Acad. Sci. USA. 104, 18871–18873.
              Cheng, H.H., Whang, L.M., Wu, C.W., Chung, M.C., 2012. A two-stage bioprocess for
                 hydrogen and methane production from rice straw bioethanol residues. Bioresour.
                 Technol. 113, 23–29.
              Chinnasamy, S., Bhatnagar, A., Hunt, R.W., Das, K.C., 2010. Microalgae cultivation in a
                 wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Tech-
                 nol. 101, 3097–3105.
              Chiranjeevi, P., Mohanakrishna, G., Venkata Mohan, S., 2012. Rhizosphere mediated elec-
                 trogenesis with the function of anode placement for harnessing bioenergy through CO 2
                 sequestration. Bioresour. Technol. 124, 364–370.
              Chiranjeevi, P., Chandra, R., Venkata Mohan, S., 2013. Ecologically engineered submerged
                 and emergent macrophyte based system: an integrated eco-electrogenic design for har-
                 nessing power with simultaneous wastewater treatment. Ecol. Eng. 51, 181–190.
              Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306.
              Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., Lin, C.S., 2008. Reduction of
                 CO 2 by a high-density culture of Chlorella sp. in a semi-continuous photobioreactor.
                 Bioresour. Technol. 99, 3389–3396.
              Choi, J.I., Lee, S.Y., 1999. High-level production of poly(3-hydroxybutyrate-co-
                 3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl. Environ.
                 Microbiol. 65, 4363–4368.
              Choi, D.W., Chipman, D.C., Bents, S.C., Brown, R.C., 2010. A techno-economic analysis
                 of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified
                 biomass. Appl. Biochem. Biotechnol. 160, 1032–1046.
              Chou, C.H., Han, C.L., Chang, J.J., Lay, J.J., 2011. Co-culture of Clostridium beijerinckii L9,
                 Clostridium butyricum M1 and Bacillus thermoamylovorans B5 for converting yeast waste into
                 hydrogen. Int. J. Hydrogen Energ. 36 (21), 13972–13983.
   288   289   290   291   292   293   294   295   296   297   298