Page 294 - Industrial Wastewater Treatment, Recycling and Reuse
P. 294
268 Industrial Wastewater Treatment, Recycling, and Reuse
Clauwaert, P., Verstraete, W., 2009. Methanogenesis in membraneless microbial electrolysis
cell. Appl. Microbiol. Biotechnol. 82 (5), 829–836.
Cusick, R.D., Kiely, P.D., Logan, B.E., 2010. A monetary comparison of energy recovered
from microbial fuel cells and microbial electrolysis cells fed winery or domestic waste-
waters. Int. J. Hydrogen Energ. 35, 8855–8861.
Dawes, E.A., 1986. Microbial energy reserve compounds. In: Dawes, E.A. (Ed.), Microbial
Energetics. Blackie & Son, London, Glasgow, United Kingdom, pp. 145–165.
de-Bashan, L.E., Bashan, Y., 2010. Immobilized microalgae for removing pollutants: review
of practical aspects. Bioresour. Technol. 101, 1611–1627.
Demirbas, A., 2008. Comparison of transesterification methods for production of biodiesel
from vegetable oils and fats. Energ. Convers. Manage. 49, 125–130.
Devi, M.P., Venkata Mohan, S., 2012. CO 2 supplementation to domestic wastewater
enhances microalgae lipid accumulation under mixotrophic microenvironment: effect
of sparging period and interval. Bioresour. Technol. 112, 116–123.
Devi, M.P., Venkata Mohan, S., Mohanakrishna, G., Sarma, P.N., 2010. Regulatory influ-
ence of CO 2 sparging on fermentative hydrogen production. Int. J. Hydrogen Energ.
35, 10701–10709.
Devi, M.P., Venkata Subhash, G., Venkata Mohan, S., 2012. Heterotrophic cultivation of
mixed microalgae for lipid accumulation and wastewater treatment during sequential
growth and starvation phases: effect of nutrient supplementation. Renew. Energy
43, 276–283.
Devi, M.P., Swamy, Y.V., Venkata Mohan, S., 2013. Nutritional mode influences lipid
accumulation in microalgae with the function of carbon sequestration and nutrient sup-
plementation. Bioresour. Technol. 142, 278–286.
Ditzig, J., Liu, H., Logan, B.E., 2007. Production of hydrogen from domestic wastewater
using a bioelectrochemically assisted microbial reactor (BEAMR). Int. J. Hydrogen
Energ. 32, 2296–2304.
Dragone, G., Fernandes,B., Vicente, A.A.,Teixeira, J.A., 2010. Third generation biofuels from
microalgae. In: Me ´ndez-Vilas, A. (Ed.), Applied Microbiology and Microbial Biotechnol-
ogy. Current Research, Technology and Education. Formatex Research Centre, Spain.
Duan, P., Savage, P.E., 2010. Hydrothermal liquefaction of a microalge with heterogeneous
catalysts. Ind. Eng. Chem. Res. 50, 52–61.
Dutta, P.K., Keller, J., Yuan, Z., Rozendal, R.A., Rabaey, K., 2009. Role of sulfur during
acetate oxidation in biological anodes. Environ. Sci. Technol. 43, 3839–3845.
Fang, H.H.P., Liu, H., 2002. Effect of pH on hydrogen production from glucose by a mixed
culture. Bioresour. Technol. 82, 87–93.
Ferchichi, M., Crabbe, V., Gil, G.-H., Hintz, W., Almadidy, A., 2005. Influence of initial
pH on hydrogen production from cheese whey. J. Biotechnol. 120, 402–409.
Franks, A.E., Nevin, K.P., 2010. Microbial fuel cells, a current review. Energies 3, 899–919.
Froyla ´n, M.E.-E., Carlos, P.-O., Jose, N.-C., Yolanda, G.-G., Andre ´, B., Humberto, G.-P.,
2009. Anaerobic digestion of the vinasses from the fermentation of Agave tequilana
Weber to tequila: the effect of pH, temperature and hydraulic retention time on the pro-
duction of hydrogen and methane. Biomass Bioenerg. 33, 14–20.
Gomez, X., Moran, A., Cuetos, M.J., Sanchez, M.E., 2006. The production of hydrogen by
dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase pro-
cess. J. Power. Sources 157, 727–732.
Gopalakrishnan, K., Lay, C.H., Chu, C.Y., Wu, J.H., Lee, S.C., Lin, C.Y., 2012. Seed inoc-
ula for biohydrogen production from biodiesel solid residues. Int. J. Hydrogen Energ.
37 (20), 15489–15495.
Goud, R.K., Venkata Mohan, S., 2011. Pre-fermentation of waste as a strategy to enhance
the performance of single chambered microbial fuel cell (MFC). Int. J. Hydrogen Energ.
36, 13753–13762.