Page 260 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 260

disp (['Ea = ' num2str(Ea(ii))  ' V']);
                 disp (['Vt = ' num2str(Vt(ii))  ' V']);
                 disp (['If = ' num2str(i_f(ii)) ' A']);

                 % Plot the curves
                 figure(1);
                 plot(i_f,Ea,'b-','LineWidth',2.0);
                 hold on;
                 plot(i_f,Vt,'k--','LineWidth',2.0);
                 % Plot intersections
                 plot([i_f(ii) i_f(ii)], [0 Ea(ii)], 'k-');
                 plot([0 i_f(ii)], [Vt(ii) Vt(ii)],'k-');
                 plot([0 i_f(ii)], [Ea(ii) Ea(ii)],'k-');
                 xlabel('\bf\itI_{F} \rm\bf(A)');
                 ylabel('\bf\itE_{A} \rm\bf or \itV_{T}');
                 title ('\bfPlot of \itE_{A} \rm\bf and \itV_{T} \rm\bf vs field
                 current');
                 axis ([0 5 0 150]);
                 set(gca,'YTick',[0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
                 150]')
                 set(gca,'XTick',[0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0]')
                 legend ('Ea line','Vt line',4);
                 hold off;
                 grid on;



































                 At  an  armature current of 40 A, the internal voltage drop in the armature resistance is
                                
                         
                       40 A 0.18  7.2 V .  As shown in the figure below, there is a difference of 7.2 V between  E A  and
                 V T   at a terminal voltage of about 110 V.  The program to create this plot is identical to the one shown
                 above, except that the gap between  E A  and V T   is 7.2 V.  The resulting terminal voltage is about 110 V.





                                                           254
   255   256   257   258   259   260   261   262   263   264   265