Page 285 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 285

P                  120.9 W
                                                                                 
                              OUT                                      0.658 N m
                                m        0.975 1800 r/min     2 rad       1 min 
                          load
                                            
                                                           1 r          60 s   
                 (g)  The overall efficiency is
                            P            120.9 W
                            OUT    100%         100% 53.5%
                                                         
                             P IN         226.1 W
                 (h)  The stator power factor is
                            
                        PF cos 60.9        0.486 lagging
          9-3.   Suppose that the motor in Problem 9-1 is started and the auxiliary winding fails open while the rotor is
                 accelerating through 400 r/min.  How much induced torque will the motor be able to produce on its main
                 winding alone?  Assuming that the rotational losses are still 51 W, will this motor continue accelerating or
                 will it slow down again?  Prove your answer.

                 SOLUTION  At a speed of 400 r/min, the slip is
                                      
                            1800 r/min 400 r/min
                         s                        0.778
                                 1800 r/min
                 The impedances Z  and  Z  are:
                                          B
                                  F
                              R s   jX   jX  
                                 /
                         Z     2       2    M
                          F
                               R 2  / s   jX   2  jX M
                 The slip s   0.778 , so  R 2  / s     2.80   / 0.778 3.60  
                                    j    3.60     j 60.5  2.56
                         Z   F                     3.303  j 2.645 
                              3.60   j 2.56   j 60.5

                                   R     /2 s   2   jX    jX
                         Z     2                 M
                          B
                                2   R     /2 s   jX   2  jX M
                 The slip s   0.778 , so  R 2       / 2 s   2.80    2 0.778 /     2.291 
                              2.291  j 2.56  60.5j  
                         Z   B                      2.106   j 2.533
                                                                  
                              2.291  j 2.56   j 60.5
                 The input current is

                                       V
                         I 
                          1
                             R   1  jX   1  0.5Z   F  0.5Z B
                                                     
                                                  120 0  V
                                                                                               
                         I   1    j    2.00   0.5  2.56   j   3.303  0.5  2.645   j 2.533  2.106     17.21     47.6  A
                 The air-gap power is

                         P AG,F  I 1 2    F  0.5R       17.21 A  2    3.303     978.3 W

                         P AG,B  I 1 2    B 0.5R       17.21 A  2    2.106     623.8 W
                                                    
                         P AG    P AG,F    P AG,B    978.3 W   623.8 W     354.5 W
                 The power converted from electrical to mechanical form is



                                                           279
   280   281   282   283   284   285   286   287   288   289   290