Page 191 - Intelligent Digital Oil And Gas Fields
P. 191

Components of Artificial Intelligence and Data Analytics     147


              Mirani, A., Samuel, R., 2016. Mitigating Vibration Induced Drillstring Failures Using Data
                 Analytics:  Workflow  and  case  Study.  SPE-178849-MS.  https://doi.org/
                 10.2118/178849-MS.
              Mohaghegh, S.D., 2005. Recent Developments in Application of Artificial Intelligence in
                 Petroleum Engineering. SPE-89033-JPT. https://doi.org/10.2118/89033-JPT.
              Mohaghegh, S.D., Abdulla, F., Abdou, M., Gaskari, R., Maysami, M., 2015. Smart Proxy:
                 An Innovative Reservoir Management Tool; Case Study of a Giant Mature Oilfield in
                 the UAE. SPE-177829-MS. https://doi.org/10.2118/177829-MS.
              Montani,S.,Jain,L.C.(Eds.),2010.SuccessfulCase-BasedReasoning Applications.Studiesin
                 ComputationalIntelligence305. Springer-Verlag,Berlin,Heidelberg,Germany,pp.1–5.
              Pokorny, J., 2011. NoSQL Databases: a step to database scalability in web environment.
                 Proceedings of the 13th International Conference on Information Integration and
                 Web-Based Applications and Services, Ho Chi Minhh City, Vietnam, 5–7 Dec.
                 2011, pp. 278–283.
              Popa, A., Popa, C., Malamma, M., Hicks, J., 2008. Case-Based Reasoning Approach for
                 Well Failure Diagnostics and Planning. SPE 114229. https://doi.org/10.2118/
                 114229-MS.
              Roth, M., Royer, T., Peebles, R., Roth, M., 2013. In: Using analytics to quantify the value
                 of seismic data for mapping Eagle Ford Sweetspots. URTEC-1619726-MS.Presented at
                 Unconventional Resources Technology Conference, Denver, CO, USA, 12-14
                 Aug. 2013.
              The R Foundation, 2017. Website The R Project for Statistical Computing. https://www.
                 r-project.org/.
              Roy, A., Dowdell, B.L., Marfurt, K.J., 2013. Characterizing a Mississippi tripolitic chert res-
                 ervoir using 3D unsupervised and supervised multiattribute seismic facies analysis: an
                 example from Osage County, Oklahoma. Interpretation 1 (2), 109–124. https://doi.
                 org/10.1190/INT-2013-0023.1.
              Saputelli, L., 2015. Transforming E&P Applications Through Big Data Analytics. Webinar,
                 Society of Petroleum Engineers.https://webevents.spe.org/products/transforming-ep-
                 applications-through-big-data-analytics-2#tab-product_tab_overview.
              Sarma, P., Leport, F., 2016. Data-Physics: A New Paradigm in Modeling and Optimizations
                 of Oil & Gas Assets. White Paper. http://www.tachyus.com/.
              SAS, 2015. How Real-Time Analytics on Streaming Data can Transform the Oil Industry.
                 White Paper. https://www.sas.com/en_us/whitepapers/real-time-analytics-streaming-
                 data-transform-oil-industry-107772.html.
              Schuetter, J., Mishra, S., Zhong, M., LaFolette, R.F., 2015. Data Analytics for Production
                 Optimization in Unconventional Reservoirs. URTEC-2167005-MS. https://doi.org/
                 10.15530/URTEC-2015-2167005.
              Seltman, H.J., 2015. Experimental Design and Analysis. Chapter, Exploratory Data Analysis.
                 pp. 61–100. http://www.stat.cmu.edu/ hseltman/309/Book/Book.pdf.
              Shirangi, M.G., 2012. Applying Machine Learning Algorithms to Oil Reservoir Production
                 Optimization. http://cs229.stanford.edu/proj2012/Shirangi-ApplyingMachineLearning
                 AlgorithmsToOilReservoirProductionOptimization.pdf.
              Singh, A., 2015. Root-Cause Identification and Production Diagnostic for Gas Wells With
                 Plunger Lift. SPE-175564-MS. https://doi.org/10.2118/175564-MS.
              Staveley, C., Thow, P., 2010. Increasing Drilling Efficiencies Through Improved Collabo-
                 ration and Analysis of Real-Time and Historical Data. SPE-128722-MS. https://doi.
                 org/10.2118/128722-MS.
              Sutton, R., Barto, A., 1998. Reinforcement Learning: An Introduction. MIT Press,
                 Cambridge, MA.
              Tabachnick, B.G., Fidell, L.S., 2013. Using Multivariate Statistics, sixth ed. Pearson,
                 London.
   186   187   188   189   190   191   192   193   194   195   196