Page 191 - Intelligent Digital Oil And Gas Fields
P. 191
Components of Artificial Intelligence and Data Analytics 147
Mirani, A., Samuel, R., 2016. Mitigating Vibration Induced Drillstring Failures Using Data
Analytics: Workflow and case Study. SPE-178849-MS. https://doi.org/
10.2118/178849-MS.
Mohaghegh, S.D., 2005. Recent Developments in Application of Artificial Intelligence in
Petroleum Engineering. SPE-89033-JPT. https://doi.org/10.2118/89033-JPT.
Mohaghegh, S.D., Abdulla, F., Abdou, M., Gaskari, R., Maysami, M., 2015. Smart Proxy:
An Innovative Reservoir Management Tool; Case Study of a Giant Mature Oilfield in
the UAE. SPE-177829-MS. https://doi.org/10.2118/177829-MS.
Montani,S.,Jain,L.C.(Eds.),2010.SuccessfulCase-BasedReasoning Applications.Studiesin
ComputationalIntelligence305. Springer-Verlag,Berlin,Heidelberg,Germany,pp.1–5.
Pokorny, J., 2011. NoSQL Databases: a step to database scalability in web environment.
Proceedings of the 13th International Conference on Information Integration and
Web-Based Applications and Services, Ho Chi Minhh City, Vietnam, 5–7 Dec.
2011, pp. 278–283.
Popa, A., Popa, C., Malamma, M., Hicks, J., 2008. Case-Based Reasoning Approach for
Well Failure Diagnostics and Planning. SPE 114229. https://doi.org/10.2118/
114229-MS.
Roth, M., Royer, T., Peebles, R., Roth, M., 2013. In: Using analytics to quantify the value
of seismic data for mapping Eagle Ford Sweetspots. URTEC-1619726-MS.Presented at
Unconventional Resources Technology Conference, Denver, CO, USA, 12-14
Aug. 2013.
The R Foundation, 2017. Website The R Project for Statistical Computing. https://www.
r-project.org/.
Roy, A., Dowdell, B.L., Marfurt, K.J., 2013. Characterizing a Mississippi tripolitic chert res-
ervoir using 3D unsupervised and supervised multiattribute seismic facies analysis: an
example from Osage County, Oklahoma. Interpretation 1 (2), 109–124. https://doi.
org/10.1190/INT-2013-0023.1.
Saputelli, L., 2015. Transforming E&P Applications Through Big Data Analytics. Webinar,
Society of Petroleum Engineers.https://webevents.spe.org/products/transforming-ep-
applications-through-big-data-analytics-2#tab-product_tab_overview.
Sarma, P., Leport, F., 2016. Data-Physics: A New Paradigm in Modeling and Optimizations
of Oil & Gas Assets. White Paper. http://www.tachyus.com/.
SAS, 2015. How Real-Time Analytics on Streaming Data can Transform the Oil Industry.
White Paper. https://www.sas.com/en_us/whitepapers/real-time-analytics-streaming-
data-transform-oil-industry-107772.html.
Schuetter, J., Mishra, S., Zhong, M., LaFolette, R.F., 2015. Data Analytics for Production
Optimization in Unconventional Reservoirs. URTEC-2167005-MS. https://doi.org/
10.15530/URTEC-2015-2167005.
Seltman, H.J., 2015. Experimental Design and Analysis. Chapter, Exploratory Data Analysis.
pp. 61–100. http://www.stat.cmu.edu/ hseltman/309/Book/Book.pdf.
Shirangi, M.G., 2012. Applying Machine Learning Algorithms to Oil Reservoir Production
Optimization. http://cs229.stanford.edu/proj2012/Shirangi-ApplyingMachineLearning
AlgorithmsToOilReservoirProductionOptimization.pdf.
Singh, A., 2015. Root-Cause Identification and Production Diagnostic for Gas Wells With
Plunger Lift. SPE-175564-MS. https://doi.org/10.2118/175564-MS.
Staveley, C., Thow, P., 2010. Increasing Drilling Efficiencies Through Improved Collabo-
ration and Analysis of Real-Time and Historical Data. SPE-128722-MS. https://doi.
org/10.2118/128722-MS.
Sutton, R., Barto, A., 1998. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA.
Tabachnick, B.G., Fidell, L.S., 2013. Using Multivariate Statistics, sixth ed. Pearson,
London.