Page 257 - Intelligent Digital Oil And Gas Fields
P. 257

Integrated Asset Management and Optimization Workflows       207




                    Generation 1                    Generation 4

                Misfit Parameter 2              Misfit Parameter 2












                        Misfit Parameter 1              Misfit Parameter 1

                    Generation 7                    Generation 11

                Misfit Parameter 2              Misfit Parameter 2  2D Pareto front












                        Misfit Parameter 1              Misfit Parameter 1
              Fig. 6.4 Behavior of the two-component objective space in a history matching-
              workflow using the multiobjective genetic algorithm (MOGA) as a function of a number
              of minimization iterations.


                 The main attributes of local optimization methods can be summarized as
              follows:
              •  they generally seek a local solution and depend on derivatives of the cost
                 function and constraints;
              •  the solution is not guaranteed to have the lowest objective (when min-
                 imization) or the highest objective (when maximization) among all the
                 feasible points;
              •  they can be solved relatively easily, because they require the differentia-
                 bility of the objective and constraints;
              •  they require initial guess (estimate); and
              •  they are frequently supported by a solid convergence theory.
   252   253   254   255   256   257   258   259   260   261   262