Page 294 - Intelligent Digital Oil And Gas Fields
P. 294
242 Intelligent Digital Oil and Gas Fields
Dilib, F.A., Jackson, M.D., 2013. Closed-Loop Feedback Control for Production Optimi-
zation of Intelligent Wells under Uncertainty. SPE-112873-PA, https://doi.org/
10.2118/150096-PA.
Dzuyba, V.I., Bogachev, K.Y., Bogaty, A.S., Lyapin, A.R., Mirgasimov, A.R.,
Semenko, A.E., 2012. Advances in Modeling of Giant Reservoirs. SPE-163090-MS,
https://doi.org/10.2118/163090-MS.
Echeverria Ciaurri, D., Mukerji, T., Durlofsky, L.J., 2011. Derivative-free Optimization for
Oil Field Operations. In: Computational Optimization and Applications in Engineering
and Industry. Studies in Computational Intelligence, vol. 359. Springer, Berlin,
Heidelberg, Germany, pp. 19–55.
Echeverria Ciaurri, D., Conn, A.R., Mello, U.T., Onwunalu, J.E., 2012. Integrating Math-
ematical Optimization and Decision Making in Intelligent Fields. SPE-149780-MS,
https://doi.org/10.2118/149780-MS.
Eeg, O.S., Herring, T., 1997. Combining Linear Programming and reservoir Simulation to
Optimize Asset Value. SPE-37446-MS, https://doi.org/10.2118/37446-MS.
Efendiev, Y., Datta-Gupta, A., Ginting, V., Ma, X., Mallick, B., 2005. An Efficient Two-
Stage Markov Chain Monte Carlo Method for Dynamic Data Integration. https://doi.
org/10.1029/2004WR003764.
Elrafie, E.A., Hogg, M., Mohammadi, H.H., 2010. Integrated Reservoir Studies Roll-Up
Initiative—A New Industry Step Change Innovation. SPE-138551-MS, https://doi.
org/10.2118/138551-MS.
Emerick, A.A., Reynolds, A.C., 2012. History-matching Time Lapse Seismic Data Using
Ensemble Kalman Filter with Multiple Data Assimilation. Comput. Geosci. 16 (3),
639–659. https://link.springer.com/article/10.1007/s10596-012-9275-5.
Emerick, A.A., Reynolds, A.C., 2013. Ensemble Smoother with Multiple Data Assimilation.
Comput. Geosci. 55, 3–15.
Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model
using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99 (C5),
10143–10162.
Evensen, G., 2009. Data Assimilation: The Ensemble Kalman Filter, second ed. Springer
Verlag, Berlin, Germany.
Ferraro, P., Verga, F., 2009. In: Use of Evolution Algorithms in Single- and Multi-
Objective Optimization Techniques for Assisted History matching.Paper Presented
at the Offshore Mediterranean Conference and Exhibition, Ravenna, Italy, 25–27
March, 2009.
Fillacier, S., Fincham, A.E., Hammersley, R.P., Heritage, J.R., Kolbikova, I., Peacock, G.,
Soloviev, V.Y., 2014. Calculating Prediction Uncertainty using Posterior Ensemble
Generated from Proxy Models. SPE-171237-MS, https://doi.org/10.2118/171237-
MS.
Fleming, G., Wang, Q., 2017. A Parallel Solution for Large Surface Networks in a Fully
Integrated Reservoir Simulator. Paper SPE-182634-MS, https://doi.org/10.2118/
182634-MS.
Floudas, C.A., Pardalos, P.M. (Eds.), 2009. Encyclopedia of Optimization. Springer, USA.
ISBN 978-0-387-74760-6.
Fu, J., Wen, X.-H., 2017. Model-Based Multi-Objective Optimization Methods for Effi-
cient Management of Subsurface Flow. SPE-182598-MS, https://doi.org/
10.2118/182598-MS.
Ghorayeb, K., Holmes, J., Torrens, R., Grewal, B., 2003. A General Purpose Controller for
Coupling Multiple Reservoir Simulations and Surface Facility Networks. SPE-79702-
MS, https://doi.org/10.2118/79702-MS.
Gomez, Y., Khazaeni, Y., Mohaghegh, S.D., Gaskari, R., 2009. Top-Down Intelligent Res-
ervoir Modeling. SPE-124204-MS, https://doi.org/10.2118/124204-MS.