Page 294 - Intelligent Digital Oil And Gas Fields
P. 294

242                                       Intelligent Digital Oil and Gas Fields


          Dilib, F.A., Jackson, M.D., 2013. Closed-Loop Feedback Control for Production Optimi-
             zation of Intelligent Wells under Uncertainty. SPE-112873-PA, https://doi.org/
             10.2118/150096-PA.
          Dzuyba, V.I., Bogachev, K.Y., Bogaty, A.S., Lyapin, A.R., Mirgasimov, A.R.,
             Semenko, A.E., 2012. Advances in Modeling of Giant Reservoirs. SPE-163090-MS,
             https://doi.org/10.2118/163090-MS.
          Echeverria Ciaurri, D., Mukerji, T., Durlofsky, L.J., 2011. Derivative-free Optimization for
             Oil Field Operations. In: Computational Optimization and Applications in Engineering
             and Industry. Studies in Computational Intelligence, vol. 359. Springer, Berlin,
             Heidelberg, Germany, pp. 19–55.
          Echeverria Ciaurri, D., Conn, A.R., Mello, U.T., Onwunalu, J.E., 2012. Integrating Math-
             ematical Optimization and Decision Making in Intelligent Fields. SPE-149780-MS,
             https://doi.org/10.2118/149780-MS.
          Eeg, O.S., Herring, T., 1997. Combining Linear Programming and reservoir Simulation to
             Optimize Asset Value. SPE-37446-MS, https://doi.org/10.2118/37446-MS.
          Efendiev, Y., Datta-Gupta, A., Ginting, V., Ma, X., Mallick, B., 2005. An Efficient Two-
             Stage Markov Chain Monte Carlo Method for Dynamic Data Integration. https://doi.
             org/10.1029/2004WR003764.
          Elrafie, E.A., Hogg, M., Mohammadi, H.H., 2010. Integrated Reservoir Studies Roll-Up
             Initiative—A New Industry Step Change Innovation. SPE-138551-MS, https://doi.
             org/10.2118/138551-MS.
          Emerick, A.A., Reynolds, A.C., 2012. History-matching Time Lapse Seismic Data Using
             Ensemble Kalman Filter with Multiple Data Assimilation. Comput. Geosci. 16 (3),
             639–659. https://link.springer.com/article/10.1007/s10596-012-9275-5.
          Emerick, A.A., Reynolds, A.C., 2013. Ensemble Smoother with Multiple Data Assimilation.
             Comput. Geosci. 55, 3–15.
          Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model
             using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99 (C5),
             10143–10162.
          Evensen, G., 2009. Data Assimilation: The Ensemble Kalman Filter, second ed. Springer
             Verlag, Berlin, Germany.
          Ferraro, P., Verga, F., 2009. In: Use of Evolution Algorithms in Single- and Multi-
             Objective Optimization Techniques for Assisted History matching.Paper Presented
             at the Offshore Mediterranean Conference and Exhibition, Ravenna, Italy, 25–27
             March, 2009.
          Fillacier, S., Fincham, A.E., Hammersley, R.P., Heritage, J.R., Kolbikova, I., Peacock, G.,
             Soloviev, V.Y., 2014. Calculating Prediction Uncertainty using Posterior Ensemble
             Generated from Proxy Models. SPE-171237-MS, https://doi.org/10.2118/171237-
             MS.
          Fleming, G., Wang, Q., 2017. A Parallel Solution for Large Surface Networks in a Fully
             Integrated Reservoir Simulator. Paper SPE-182634-MS, https://doi.org/10.2118/
             182634-MS.
          Floudas, C.A., Pardalos, P.M. (Eds.), 2009. Encyclopedia of Optimization. Springer, USA.
             ISBN 978-0-387-74760-6.
          Fu, J., Wen, X.-H., 2017. Model-Based Multi-Objective Optimization Methods for Effi-
             cient  Management  of  Subsurface  Flow.  SPE-182598-MS,  https://doi.org/
             10.2118/182598-MS.
          Ghorayeb, K., Holmes, J., Torrens, R., Grewal, B., 2003. A General Purpose Controller for
             Coupling Multiple Reservoir Simulations and Surface Facility Networks. SPE-79702-
             MS, https://doi.org/10.2118/79702-MS.
          Gomez, Y., Khazaeni, Y., Mohaghegh, S.D., Gaskari, R., 2009. Top-Down Intelligent Res-
             ervoir Modeling. SPE-124204-MS, https://doi.org/10.2118/124204-MS.
   289   290   291   292   293   294   295   296   297   298   299