Page 296 - Intelligent Digital Oil And Gas Fields
P. 296
244 Intelligent Digital Oil and Gas Fields
Kam, D., Han, J., Datta-Gupta, A., 2016. Streamline-based Rapid History Matching of
Bottomhole Pressure and Three-phase Production Data. SPE-179549-MS, https://
doi.org/10.2118/179549-MS.
Kang, B., Lee, K., Choe, J., 2015. Efficient Sampling Scheme for Uncertainty Quantification
Using PCA. SPE-176183-MS, https://doi.org/10.2118/176183-MS.
Kang, S., Bhark, E., Datta-Gupta, A., Kim, J., Jang, I., 2014. A Hierarchical Model Calibra-
tion Approach with Multiscale Spectral-Domain Parameterization: Application to a
Structurally Complex Fractured Reservoir. SPE-169061-MS, https://doi.org/
10.2118/169061-MS.
Kansao, R., Yrigoyen, A., Haris, Z., Saputelli, L., 2017. Waterflood performance diagnosis
and optimization using data-driven predictive analytical techniques from capacitance
resistance models CRM. In: SPE 185813-MS. https://doi.org/10.2118/185813-MS.
Khedr, O., Al Marzouqi, M., Torrens, R., Amtereg, A., 2009. On the Importance and
Application of Integrated Asset Modeling of a Giant Offshore Oil Field. SPE-
123689-MS, https://doi.org/10.2118/123689-MS.
Khedr, O.H., Amur, J., Al-Ameri, R., Torrens, R., Amtereg, A.A., 2012. A Unique Inte-
grated Asset Modeling Solution to Optimize and Manage Uncertainty in a Giant Off-
shore Oil Field Development Mega-Project. SPE-161280-MS, https://doi.org/
10.2118/161280-MS.
Kitanidis, P.K., 1995. Quasi-linear geo-statistical theory for inversion. Water Resour. Res.
31 (10), 2411–2419.
Klie, H., 2015. Physics-Based and Data-Driven Surrogates for Production Forecasting. SPE-
173206-MS, https://doi.org/10.2118/173206-MS.
Kozman, J.B., 2004. Why Can’t I just Start with a Map?—Case Histories for Integrated Asset
Management. SPE-87022-MS, https://doi.org/10.2118/87022-MS.
Kumar, S., Wen, X.-H., He, J., Lin, W., Yardumian, H., Fahruri, I., et al., 2017. Integrated
Static and Dynamic Uncertainty Modeling Big-Loop Workflow Enhances Performance
Prediction and Optimization. SPE-182711-MS, https://doi.org/10.2118/182711-MS.
Le, D.H., Emerick, A.A., Reynolds, A.C., 2015. An adaptive ensemble smoother with mul-
tiple data assimilation for assisted history matching. In: SPE-173214-MS. https://doi.
org/10.2118/173214-MS.
Li, J., Jiang, H., Liang, B., Zhou, D., Ding, S., Gong, C., Zhao, L., 2016. Injection Allo-
cation in Multi-Layer Water Flooding Reservoirs Using SVM Optimized by Genetic
Algorithm. IPTC-19006-MS, https://doi.org/10.2523/IPTC-19006-MS.
Li, X., Reynolds, A.C., 2017. Generation of a Proposal Distribution for Efficient MCMC
Characterization of Uncertainty in Reservoir Description and Forecasting. SPE-
182684-MS, https://doi.org/10.2118/182684-MS.
Liao, T.T., Stein, M.H., 2002. Evaluating Operation Strategies via Integrated reservoir
Modeling. SPE-75525-MS, https://doi.org/10.2118/75525-MS.
Liu, X., Reynolds, A.C., 2015. Multiobjective Optimization for Maximizing Expectation
and Minimizing Uncertainty or Risk with Application to Optimal Well Control.
SPE-173216-MS, https://doi.org/10.2118/173216-MS.
Lorentzen, R.J., Berg, A., Naevdal, G., Vefring, E.H., 2006. A New Approach for Dynamic
Optimization of Water Flooding Problems. SPE-99690-MS, https://doi.org/
10.2118/99690-MS.
Ma, X., Al-Harbi, M., Datta-Gupta, A., Efendiev, Y., 2006. A Multistage Sampling Method
for Rapid Quantification of Uncertainty in History Matching Geological Models. SPE-
102476-MS, https://doi.org/10.2118/102476-MS.
Mata-Lima, H., 2011. Evaluation of the objective functions to improve production history
matching performance based on fluid flow behavior in reservoirs. J. Pet. Sci. Eng. 78 (1),
42–53. https://doi.org/10.1016/j.petrol.2011.05.015.
Maucec, M., 2016. Systems and Methods for Generating Updates of Geological Models. US
Patent 9,330,064 B2.