Page 298 - Intelligent Digital Oil And Gas Fields
P. 298

246                                       Intelligent Digital Oil and Gas Fields


          Oliver, D.S., 1996. Multiple Realizations of the Permeability Field from Well-test Data.
             SPE-27970-PA, https://doi.org/10.2118/27970-PA.
          Oliver, D.S., He, N., Reynolds, A.C., 1996. Conditioning Permeability Fields to Pressure
             Data.Presented at the 5th European Conference on the Mathematics of Oil Recovery
             (ECMOR), Leoben, Austria, September 3–6, 1996.
          Ombach, J., 2014. A Short Introduction to Stochastic Optimization. Schedae Informaticae
             23, 9–20.
          Onwunalu, J.E., Durlofsky, L.J., 2011. A New Well-Pattern Optimization procedure
             for Large-Scale Field Development. SPE-124364-PA, https://doi.org/10.2118/
             124364-PA.
          Ouenes, A., Bhagavan, S., Bunge, P.H., Travis, B.J., 1994. Application of Simulated
             Annealing and Other Global Optimization Methods to Reservoir Description: Myths
             and Realities. SPE-28415-MS, https://doi.org/10.2118/28415-MS.
          Ramirez, B.A., Joosten, G.J.P., Kaleta, M.P., Gelderblom, P.P., 2017. Model-Based Well
             Location Optimization—A Robust Approach. SPE-182632-MS, https://doi.org/
             10.2118/182632-MS.
          Rwenchungura, R., Dadashpour, M., Kleppe, J., 2011. Advanced History Matching Tech-
             niques Reviewed. SPE-142497-MS, https://doi.org/10.2118/142497-MS.
          Sætrom, J., Selseng, H., MacDonald, A., Kjølseth, T., Kolbjørnsen, O., 2016. Consistent
             Integration of Drill-Stem Test Data into Reservoir Models on a Giant Field Offshore
             Norway. SPE 181352-MS, https://doi.org/10.2118/181352-MS.
          Salam, D.D., Gunardi, I., Yasutra, A., 2015. Production Optimization Strategy Using
             Hybrid Genetic Algorithm. SPE-177442-MS, https://doi.org/10.2118/177442-MS.
          Salsburg, D., 2001. The Lady Tasting Tea—How Statistics Revolutionized Science in the
             Twentieth Century. Henry Holt & Co., New York, NY.
          Sambo, C.H., Hematpour, H., Danaei, S., Herman, M., Ghosh, D.P., Abass, A.,
             Elraies, K.A., 2016. An Integrated Reservoir Modeling and Evolutionary Algorithm
             for Optimizing Field Development in a Mature Fractured Reservoir. SPE 183178-
             MS, https://doi.org/10.2118/183178-MS.
          Sampaio Pinto, M.A., Ghasemi, M., Sorek, N., Gildin, E., Schiozer, D.J., 2015. Hybrid
             Optimization for Closed-Loop Reservoir Management. SPE-173278-MS, https://
             doi.org/10.2118/173278-MS.
          Saputelli, L., Nikolaou, M., Economides, M.J., 2003. Self-Learning Reservoir Management.
             SPE-84064-MS, https://doi.org/10.2118/84064-MS.
          Saputelli, L., Nikolaou, M., Economides, M.J., 2006. Real-time reservoir management:
             a multi-scale adaptive optimization and control approach. Comput. Geosci. 10 (1),
             61–96.
          Sarma, P., Chen, W.H., 2011. Robust and Efficient Handling of Model Constraints with the
             Kernel-Based  Ensemble  Kalman.  Filter.  SPE-141948-MS,  https://doi.org/
             10.2118/141948-MS.
          Sarma, P., Chen, W.H., 2013. Preventing Ensemble Collapse and Honoring Multipoint
             Geostatistics with the Subspace EnKF/EnS and Kernel PCA Parameterization. SPE-
             163604-MS, https://doi.org/10.2118/163604-MS.
          Sarma, P., Durlofsky, L.J., Aziz, K., 2005. Efficient Closed-Loop Production Optimization
             under Uncertainty. SPE-94241-MS, https://doi.org/10.2118/94241-MS.
          Sarma, P., Durlofsky, L.J., Aziz, K., Chen, W.H., 2006. Efficient real-time reservoir man-
             agement using adjoint-based optimal control and model updating. Comput. Geosci.
             10 (1), 3–36.https://link.springer.com/article/10.1007/s10596-005-9009-z.
          Sarma, P., Chen, W.H., Durlofsky, L.J., Aziz, K., 2008. Production Optimization with
             Adjoint Models under Nonlinear Control-State Path Inequality Constraints. SPE-
             99959-PA, https://doi.org/10.2118/99959-PA.
   293   294   295   296   297   298   299   300   301   302   303