Page 207 - Intro to Tensor Calculus
P. 207

202



               EXAMPLE 2.2-5. (Euler angles φ, θ, ψ)       Consider the following sequence of transformations which
               are used in celestial mechanics. First a rotation about the x 3 axis taking the x i axes to the y i axes
                                                                         
                                               y 1       cos φ  sin φ  0   x 1
                                               y 2    =    − sin φ  cos φ 0     x 2  
                                               y 3        0      0    1    x 3
               where the rotation angle φ is called the longitude of the ascending node. Second, a rotation about the y 1
                                           0
               axis taking the y i axes to the y axes
                                           i
                                                                        
                                               y 0 1    1    0      0      y 1
                                               y 0   =   0  cos θ  sin θ     y 2  
                                                2
                                               y 0 3    0 − sin θ  cos θ   y 3
               where the rotation angle θ is called the angle of inclination of the orbital plane. Finally, a rotation about
                                    0
               the y axis taking the y axes to the ¯x i axes
                    0
                                    i
                    3
                                                                         
                                               ¯ x 1     cos ψ  sin ψ  0    y 0 1
                                               ¯ x 2    =    − sin ψ  cos ψ  0     y 0 
                                                                             2
                                               ¯ x 3      0      0    1     y 0 3
               where the rotation angle ψ is called the argument of perigee. The Euler angle θ is the angle ¯x 3 0x 3 , the angle
               φ is the angle x 1 0y 1 and ψ is the angle y 1 0¯x 1 . These angles are illustrated in the figure 2.2-6. Note also that
                                                                                         ˙ ˙ ˙
               the rotation vectors associated with these transformations are vectors of magnitude φ, θ, ψ in the directions
               indicated in the figure 2.2-6.




























                                                   Figure 2.2-6. Euler angles.



                   By combining the above transformations there results the transformation equations (2.2.50)
                                                                                                 
                                cos ψ cos φ − cos θ sin φ sin ψ  cos ψ sin φ +cos θ cos φ sin ψ  sin ψ sin θ
                      ¯ x 1                                                                         x 1
                      ¯ x 2    =    − sin ψ cos φ − cos θ sin φ cos ψ  − sin ψ sin φ +cos θ cos φ cos ψ  cos ψ sin θ     x 2   .
                      ¯ x 3             sin θ sin φ                − sin θ cos φ         cos θ      x 3
                   It is left as an exercise to verify that the transformation matrix is orthogonal and the components ` ji
               satisfy the relations (2.2.51).
   202   203   204   205   206   207   208   209   210   211   212