Page 212 - Intro to Tensor Calculus
P. 212

207



                                                                                           2
                                                                                        2
                                                                                              3
              I 11. Express the generalized velocity and acceleration in spherical coordinates (x ,x ,x )= (ρ, θ, φ)and
               show                                       1    2           2              2
                                      dx 1  dρ     f = δV   =  d ρ  − ρ  dθ  − ρ sin θ  dφ
                                                    1
                                                                                  2
                                  1
                                 V =      =             δt    dt 2     dt             dt
                                      dt    dt
                                                               2
                                      dx 2  dθ      2  δV  2  d θ             dφ    2  2 dρ dθ
                                  2
                                 V =      =        f =      =     − sin θ cos θ    +
                                      dt    dt          δt    dt 2            dt     ρ dt dt
                                      dx 3  dφ            3    2
                                  3
                                 V =      =         3  δV     d φ   2 dρ dφ        dθ dφ
                                      dt    dt     f =      =   2  +       +2 cot θ
                                                        δt    dt    ρ dt dt        dt dt
               Find the physical components of velocity and acceleration in spherical coordinates and show
                                                        2
                                       dρ              d ρ      dθ    2    2    dφ    2
                                  V ρ =            f ρ =  2  − ρ     − ρ sin θ
                                       dt              dt       dt             dt
                                        dθ              d θ               dφ    2  dρ dθ
                                                         2
                                  V θ =ρ           f θ =ρ   − ρ sin θ cos θ    +2
                                        dt              dt 2              dt      dt dt
                                            dφ               2
                                  V φ =ρ sin θ              d φ        dρ dφ         dθ dφ
                                            dt     f φ =ρ sin θ  2  +2 sin θ  +2ρ cos θ
                                                             dt         dt dt         dt dt
              I 12. Expand equation (2.2.39) and write out all the components of the moment of inertia tensor I ij .
              I 13. For ρ the density of a continuous material and dτ an element of volume inside a region R where the
               material is situated, we write ρdτ as an element of mass inside R. Find an equation which describes the
               center of mass of the region R.


              I 14. Use the equation (2.2.68) to derive the equation (2.2.69).

              I 15. Drop the bar notation and expand the equation (2.2.70) and derive the equations (2.2.71).


              I 16. Verify the Euler transformation, given in example 2.2-5, is orthogonal.

              I 17. For the pulley and mass system illustrated in the figure 2.2-7 let

                                               a = the radius of each pulley.

                                               ` 1 = the length of the upper chord.
                                               ` 2 = the length of the lower chord.

               Neglect the weight of the pulley and find the equations of motion for the pulley mass system.
   207   208   209   210   211   212   213   214   215   216   217