Page 210 - Intro to Tensor Calculus
P. 210

205



                   Now if we multiply equation (2.2.49) by e rjk ,thenitcan be writteninthe form

                                                         dH ij
                                                              = M ij .                                (2.2.67)
                                                          dt
               Similarly, if we multiply the equation (2.2.42) by e imn , then it can be expressed in the alternate form

                                                  H mn = e imn ω j I ji = I mnst ω st
               and because of this relation the equation (2.2.67) can be expressed as
                                                      d
                                                        (I ijst ω st )= M ij .                        (2.2.68)
                                                      dt
               We write this equation in the barred system of coordinates where I pqrs will be a constant and consequently
               its derivative will be zero. We employ the transformation equations
                                                    I ijst = ` ip ` jq ` sr ` tk I pqrk

                                                     ω ij = ` si ` tj ω st
                                                    M pq = ` ip ` jq M ij
               and then multiply the equation (2.2.68) by ` ip ` jq and simplify to obtain
                                                     d
                                                ` ip ` jq  ` iα ` jβ I αβrk ω rk = M pq .
                                                     dt
               Expand all terms in this equation and take note that the derivative of the I αβrk is zero. The expanded
               equation then simplifies to

                                          dω rk
                                     I pqrk   +(δ αu δ pv δ βq + δ pα δ βu δ qv ) I αβrk ω rk ω uv = M pq .  (2.2.69)
                                           dt
               Substitute into equation (2.2.69) the relations from equations (2.2.61),(2.2.64) and (2.2.66), and then multiply
               by e mpq and simplify to obtain the Euler’s equations of motion
                                                    dω i
                                                 I im   − e tmj I ij ω i ω t = M m .                  (2.2.70)
                                                     dt
                   Dropping the bar notation and performing the indicated summations over the range 1,2,3 we find the
               Euler equations have the form



                     dω 1     dω 2     dω 3
                   I 11  + I 21   + I 31   +(I 13 ω 1 + I 23 ω 2 + I 33 ω 3 ) ω 2 − (I 12 ω 1 + I 22 ω 2 + I 32 ω 3 ) ω 3 = M 1
                      dt       dt      dt
                     dω 1     dω 2     dω 3
                   I 12  + I 22   + I 32   +(I 11 ω 1 + I 21 ω 2 + I 31 ω 3 ) ω 3 − (I 13 ω 1 + I 23 ω 2 + I 33 ω 3 ) ω 1 = M 2  (2.2.71)
                      dt       dt      dt
                     dω 1     dω 2     dω 3
                   I 13  + I 23   + I 33   +(I 12 ω 1 + I 22 ω 2 + I 32 ω 3 ) ω 1 − (I 11 ω 1 + I 21 ω 2 + I 31 ω 3 ) ω 2 = M 3 .
                      dt       dt      dt
                   In the special case where the barred axes are principal axes, then I ij =0 for i 6= j and the Euler’s
               equations reduces to the system of nonlinear differential equations
                                                   dω 1
                                                I 11   +(I 33 − I 22 )ω 2 ω 3 = M 1
                                                    dt
                                                   dω 2
                                                I 22   +(I 11 − I 33 )ω 3 ω 1 = M 2                   (2.2.72)
                                                    dt
                                                   dω 3
                                                I 33   +(I 22 − I 11 )ω 1 ω 2 = M 3 .
                                                    dt
                   In the case of constant coefficients and constant moments the solutions of the above differential equations
               can be expressed in terms of Jacobi elliptic functions.
   205   206   207   208   209   210   211   212   213   214   215