Page 229 - Intro to Tensor Calculus
P. 229

223






























































                                   Figure 2.3-12. Displacement of element ABCD to A B C D 0
                                                                                 0
                                                                                      0
                                                                                   0
               Expanding u and v in (2.3.32) in Taylor series about the point (x, y) we find
                                                                ∂u
                                                x = x +∆x + u +    ∆x + h.o.t.
                                                                ∂x                                    (2.3.33)
                                                           ∂v
                                                y = y + v +  ∆x + h.o.t.,
                                                           ∂x
               where h.o.t. denotes higher order terms which have been neglected. The equations (2.3.33) require that the
               coefficients b ij satisfy the matrix equation
                                                      ∂u
                                         x + u +∆x +    ∆x       b 11  b 12  x +∆x
                                                      ∂x     =                      .                 (2.3.34)
                                            y + v +  ∂v  ∆x      b 21  b 22    y
                                                   ∂x
   224   225   226   227   228   229   230   231   232   233   234