Page 230 - Intro to Tensor Calculus
P. 230

224



                                                 0
               The displacement of the point C to C is described by the coordinates (x, y +∆y) transforming to (x, y)
               where
                                       x = x + u(x, y +∆y),   y = y +∆y + v(x, y +∆y).                (2.3.35)

               Again we expand the displacement field components u and v in a Taylor series about the point (x, y)and
               find
                                                                ∂u
                                                     x = x + u +   ∆y + h.o.t.
                                                                ∂y
                                                                                                      (2.3.36)
                                                                ∂v
                                                y = y +∆y + v +    ∆y + h.o.t.
                                                                ∂y
               This equation implies that the coefficients b ij must be chosen such that

                                                   ∂u
                                            x + u +  ∆y
                                                   ∂y        =   b 11  b 12   x     .                 (2.3.37)
                                         y + v +∆y +  ∂v ∆y      b 21  b 22  y +∆y
                                                      ∂y
                                                                                                        0
               Finally, it can be verified that the point D with coordinates (x +∆x, y +∆y) moves to the point D with
               coordinates
                               x = x +∆x + u(x +∆x, y +∆y),      y = y +∆y + v(x +∆x, y +∆y).         (2.3.38)

               Expanding u and v in a Taylor series about the point (x, y) we find the coefficients b ij must be chosen to
               satisfy the matrix equation

                                                  ∂u      ∂u
                                     x +∆x + u +    ∆x +    ∆y
                                                  ∂x      ∂y     =   b 11  b 12  x +∆x  .             (2.3.39)
                                      y +∆y + v +  ∂v ∆x +  ∂v  ∆y   b 21  b 22  y +∆y
                                                  ∂x      ∂y
                   The equations (2.3.31),(2.3.34),(2.3.37) and (2.3.39) give rise to the simultaneous equations

                                                  b 11 x + b 12 y = x + u
                                                  b 21 x + b 22 y = y + v
                                                                           ∂u
                                           b 11 (x +∆x)+ b 12 y = x + u +∆x +  ∆x
                                                                           ∂x
                                                                     ∂v
                                           b 21 (x +∆x)+ b 22 y = y + v +  ∆x
                                                                     ∂x
                                                                     ∂u
                                           b 11 x + b 12 (y +∆y)= x + u +  ∆y                         (2.3.40)
                                                                      ∂y
                                                                          ∂v
                                           b 21 x + b 22 (y +∆y)= y + v +∆y +  ∆y
                                                                          ∂y
                                                                           ∂u      ∂u
                                    b 11 (x +∆x)+ b 12 (y +∆y)= x +∆x + u +  ∆x +    ∆y
                                                                           ∂x      ∂y
                                                                          ∂v      ∂v
                                    b 21 (x +∆x)+ b 22 (y +∆y)= y +∆y + v +  ∆x +    ∆y.
                                                                          ∂x      ∂y
                   It is readily verified that the system of equations (2.3.40) has the solution

                                                         ∂u           ∂u
                                                b 11 =1 +       b 12 =
                                                         ∂x           ∂y                              (2.3.41)
                                                      ∂v                 ∂v
                                                b 21 =          b 22 =1 +   .
                                                      ∂x                 ∂y
   225   226   227   228   229   230   231   232   233   234   235