Page 233 - Intro to Tensor Calculus
P. 233

227



                                                                0
                   For Q a neighboring point of P which moves to Q when the material is in a state of strain, we have
               from the figure 2.3-14 the following vectors:

                               position of P : y i ,  i =1, 2, 3
                                         0
                              position of P : y i + u i (y 1 ,y 2 ,y 3 ),  i =1, 2, 3
                                                                                                      (2.3.52)
                              position of Q : y i +∆y i ,  i =1, 2, 3
                                         0
                              position of Q : y i +∆y i + u i (y 1 +∆y 1 ,y 2 +∆y 2 ,y 3 +∆y 3 ),  i =1, 2, 3
               Employing our earlier one dimensional definition of strain, we define the strain associated with the point P
                                        L − L 0
               in the direction PQ as e =     , where L 0 = PQ and L = P Q . To calculate the strain we need to first
                                                                         0
                                                                       0
                                          L 0
                                                           2
                                                                  2
               calculate the distances L 0 and L. The quantities L and L are easily calculated by considering dot products
                                                           0
                                              2
               of vectors. For example, we have L =∆y i ∆y i , and the distance L = P Q is the magnitude of the vector
                                                                              0
                                                                                0
                                              0
                            y i +∆y i + u i (y 1 +∆y 1 ,y 2 +∆y 2 ,y 3 +∆y 3 ) − (y i + u i (y 1 ,y 2 ,y 3 )),  i =1, 2, 3.
               Expanding the quantity u i (y 1 +∆y 1,y 2 +∆y 2 ,y 3 +∆y 3 ) in a Taylor series about the point P and neglecting
               higher order terms of the expansion we find that
                                              2
                                            L =(∆y i +  ∂u i  ∆y m )(∆y i +  ∂u i  ∆y n ).
                                                        ∂y m            ∂y n
               Expanding the terms in this expression produces the equation
                                   2
                                 L =∆y i ∆y i +  ∂u i  ∆y i ∆y n +  ∂u i  ∆y m ∆y i +  ∂u i ∂u i  ∆y m ∆y n .
                                                ∂y n         ∂y m          ∂y m ∂y n
                                                                                2
                                                                            2
               Note that L and L 0 are very small and so we express the difference L − L in terms of the strain e. We can
                                                                                0
               write
                                      2
                                                                                           2
                                 2
                                L − L =(L + L 0)(L − L 0 )= (L − L 0 +2L 0)(L − L 0 )= (e +2)eL .
                                      0                                                    0
                                        2
               Now for e very small, and e negligible, the above equation produces the approximation
                                             2
                                           L − L 2
                                        2        0   1 ∂u m    ∂u n   ∂u r ∂u r
                                     eL ≈          =         +     +           ∆y m ∆y n .
                                        0
                                              2      2   ∂y n  ∂y m   ∂y m ∂y n
               The quantities

                                                     1 ∂u m    ∂u n  ∂u r ∂u r
                                               e mn =       +      +                                  (2.3.53)
                                                     2  ∂y n   ∂y m  ∂y m ∂y n
               is called the Green strain tensor or Lagrangian strain tensor. To show that e ij is indeed a tensor, we consider
               the transformation y i = ` ij y +b i , where ` ji ` ki = δ jk = ` ij ` ik . Note that from the derivative relation  ∂y i  = ` ij
                                        j
                                                                                                     ∂y j
               and the transformation equations u i = ` ij u j ,i =1, 2, 3 we can express the strain in the barred system of
               coordinates. Performing the necessary calculations produces

                              1 ∂u i   ∂u j  ∂u r ∂u r
                         e ij =     +     +
                              2 ∂y     ∂y    ∂y ∂y
                                   j     i     i   j

                              1   ∂       ∂y n    ∂        ∂y m   ∂        ∂y k ∂        ∂y t
                           =        (` ik u k )  +  (` jk u k )  +   (` rs u s )  (` rmu m )
                              2 ∂y n      ∂y    ∂y m       ∂y    ∂y k      ∂y ∂y t       ∂y
                                             j               i               i              j

                              1       ∂u m         ∂u k            ∂u s ∂u p
                           =    ` im ` nj  + ` jk ` mi  + ` rs` rp ` ki ` tj
                              2       ∂y n        ∂y m             ∂y k ∂y t

                              1 ∂u m   ∂u n   ∂u s ∂u s
                           =         +      +          ` im ` nj
                              2  ∂y n  ∂y m   ∂y m ∂y n
                   or    e ij = e mn ` im ` nj .Consequently, the strain e ij transforms like a second order Cartesian tensor.
   228   229   230   231   232   233   234   235   236   237   238