Page 27 - Intro to Tensor Calculus
P. 27

23



               EXAMPLE 1.1-19. In Cartesian coordinates prove the vector identity

                                                ~
                                                           ~
                                                                                 ~
                                                                       ~
                                         curl (fA)= ∇× (fA)= (∇f) × A + f(∇× A).
                                       ~
                             ~
               Solution: Let B =curl (fA) and write the components as
                                                  B i = e ijk (fA k ) ,j
                                                     = e ijk [fA k,j + f ,j A k ]
                                                     = fe ijk A k,j + e ijk f ,j A k .

               This index form can now be expressed in the vector form
                                                        ~
                                                                   ~
                                                                              ~
                                             ~
                                             B =curl (fA)= f(∇× A)+ (∇f) × A
                                                                   ~
                                                                           ~
                                                               ~
                                                                                  ~
               EXAMPLE 1.1-20. Prove the vector identity ∇· (A + B)= ∇· A + ∇· B
                                 ~
                             ~
                                      ~
               Solution: Let A + B = C and write this vector equation in the index notation as A i + B i = C i .We then
               have
                                                                              ~
                                                                                     ~
                                         ~
                                      ∇· C = C i,i =(A i + B i ) ,i = A i,i + B i,i = ∇· A + ∇· B.
                                                                                  ~
                                                                                           ~
               EXAMPLE 1.1-21. In Cartesian coordinates prove the vector identity (A ·∇)f = A ·∇f
               Solution: In the index notation we write
                                       ~
                                      (A ·∇)f = A i f ,i = A 1 f ,1 + A 2 f ,2 + A 3 f ,3
                                                          ∂f      ∂f       ∂f
                                                                                 ~
                                                     = A 1  1  + A 2  2  + A 3  3  = A ·∇f.
                                                         ∂x       ∂x      ∂x
               EXAMPLE 1.1-22. In Cartesian coordinates prove the vector identity

                                                                  ~
                                                                                       ~
                                             ~
                                                                                  ~
                                                                             ~
                                                                       ~
                                         ~
                                                  ~
                                                        ~
                                                            ~
                                    ∇× (A × B)= A(∇· B) − B(∇· A)+(B ·∇)A − (A ·∇)B
                                                            ~
                                                                ~
               Solution: The pth component of the vector ∇× (A × B)is
                                                 ~   ~
                                       b e p · [∇× (A × B)] = e pqk [e kji A j B i ] ,q
                                                        = e pqk e kji A j B i,q + e pqk e kji A j,q B i
               By applying the e − δ identity, the above expression simplifies to the desired result. That is,
                                          ~   ~
                                b e p · [∇× (A × B)] = (δ pj δ qi − δ pi δ qj )A j B i,q +(δ pj δ qi − δ pi δ qj )A j,q B i
                                                 = A p B i,i − A q B p,q + A p,q B q − A q,q B p
               In vector form this is expressed
                                                                                      ~
                                                                                 ~
                                                  ~
                                                        ~
                                         ~
                                             ~
                                                                       ~
                                                                             ~
                                                             ~
                                                                   ~
                                    ∇× (A × B)= A(∇· B) − (A ·∇)B +(B ·∇)A − B(∇· A)
   22   23   24   25   26   27   28   29   30   31   32