Page 32 - Intro to Tensor Calculus
P. 32

28



                                                      EXERCISE 1.1

              I 1.  Simplify each of the following by employing the summation property of the Kronecker delta. Perform
               sums on the summation indices only if your are unsure of the result.

                                 (a) e ijk δ kn        (c) e ijk δ is δ jm δ kn  (e) δ ij δ jn
                                                       (d)
                                 (b) e ijk δ is δ jm       a ij δ in           (f) δ ij δ jn δ ni

              I 2.  Simplify and perform the indicated summations over the range 1, 2, 3

                              (a)  δ ii         (c) e ijk A i A j A k   (e) e ijk δ jk
                              (b) δ ij δ ij     (d)  e ijk e ijk       (f) A i B j δ ji − B m A n δ mn


                                                                                                       ~
              I 3.  Express each of the following in index notation. Be careful of the notation you use. Note that A = A i
                                                                                    ~
               is an incorrect notation because a vector can not equal a scalar. The notation A · b e i = A i should be used to
               express the ith component of a vector.

                                               ~
                                            ~
                                                                    ~ ~ ~
                                                    ~
                                       (a) A · (B × C)         (c) B(A · C)
                                                                    ~ ~ ~
                                                                              ~ ~ ~
                                                ~
                                            ~
                                                     ~
                                       (b) A × (B × C)         (d)  B(A · C) − C(A · B)
              I 4.  Show the e permutation symbol satisfies: (a)  e ijk = e jki = e kij  (b) e ijk = −e jik = −e ikj = −e kji
                                                               ~
                                                                                      ~ ~ ~
                                                                   ~
                                                                            ~ ~ ~
                                                                       ~
              I 5.  Use index notation to verify the vector identity A × (B × C)= B(A · C) − C(A · B)
              I 6.  Let y i = a ij x j and x m = a im z i where the range of the indices is 1, 2
                           (a)Solve for y i in terms of z i using the indicial notation and check your result
                                to be sure that no index repeats itself more than twice.
                           (b) Perform the indicated summations and write out expressions
                                 for y 1 ,y 2 in terms of z 1 ,z 2
                           (c)  Express the above equations in matrix form. Expand the matrix

                                equations and check the solution obtained in part (b).

              I 7.  Use the e − δ identity to simplify (a)  e ijk e jik  (b)  e ijk e jki

              I 8.  Prove the following vector identities:
                                                                      ~
                                     ~
                                                      ~
                                                               ~
                                                                  ~
                                         ~
                                                          ~
                                             ~
                                                  ~
                                (a)  A · (B × C)= B · (C × A)= C · (A × B) triple scalar product
                                               ~
                                                             ~ ~
                                      ~
                                                                  ~
                                                   ~ ~ ~
                                          ~
                                (b)(A × B) × C = B(A · C) − A(B · C)
              I 9.  Prove the following vector identities:
                                                                      ~
                                                   ~
                                                                   ~
                                           ~
                                               ~
                                                                            ~ ~
                                                                                     ~
                                                       ~
                                                             ~ ~
                                                                                  ~
                                     (a)(A × B) · (C × D)= (A · C)(B · D) − (A · D)(B · C)
                                          ~
                                                                              ~
                                                                          ~
                                               ~
                                                            ~
                                                   ~
                                                        ~
                                                                ~
                                                                     ~
                                                                                  ~
                                     (b) A × (B × C)+ B × (C × A)+ C × (A × B)= 0
                                                                                     ~
                                                                                 ~
                                                    ~
                                               ~
                                           ~
                                                        ~
                                                                            ~ ~
                                                                       ~
                                                             ~ ~ ~
                                     (c)  (A × B) × (C × D)= B(A · C × D) − A(B · C × D)
   27   28   29   30   31   32   33   34   35   36   37