Page 36 - Intro to Tensor Calculus
P. 36

32



              I 32.  Show the results in problem 31 can be written in the forms:

                       1                     1                     1                          1
                 A i1 =  e 1st e ijk a js a kt ,  A i2 =  e 2st e ijk a js a kt ,  A i3 =  e 3st e ijk a js a kt ,  or A im =  e mst e ijk a js a kt
                       2!                    2!                    2!                         2!

              I 33.  Use the results in problems 31 and 32 to prove that a pm A im = |A|δ ip .

                                        
                                  1  2 1
              I 34.  Let (a ij )=    1  0 3    and calculate C = a ij a ij ,i, j =1, 2, 3.
                                  2  3 2

              I 35.  Let
                                           a 111 = −1,  a 112 =3,  a 121 =4,  a 122 =2

                                           a 211 =1,  a 212 =5,  a 221 =2,  a 222 = −2
               and calculate the quantity C = a ijk a ijk , i,j,k =1, 2.

              I 36.  Let
                                        a 1111 =2,  a 1112 =1,  a 1121 =3,  a 1122 =1

                                        a 1211 =5,  a 1212 = −2,  a 1221 =4,  a 1222 = −2
                                        a 2111 =1,  a 2112 =0,  a 2121 = −2,  a 2122 = −1

                                        a 2211 = −2,  a 2212 =1,  a 2221 =2,  a 2222 =2
               and calculate the quantity C = a ijkl a ijkl , i,j,k,l =1, 2.

              I 37.  Simplify the expressions:

                                                                          ∂x i
                                                                     (c)
                      (a)(A ijkl + A jkli + A klij + A lijk )x i x j x k x l  j
                                                                          ∂x
                                                                               2 i
                                                                                              2 m
                                             i j k
                      (b)(P ijk + P jki + P kij )x x x                       ∂ x   ∂x j      ∂ x   ∂x i
                                                                     (d)  a ij  t  s  r  − a mi  s  t  r
                                                                            ∂x ∂x ∂x        ∂x ∂x ∂x
              I 38.  Let g denote the determinant of the matrix having the components g ij ,i, j =1, 2, 3. Show that


                                              g 1r  g 1s  g 1t                 g ir  g is  g it


                                 (a) ge rst = g 2r  g 2s  g 2t  (b) ge rst e ijk = g jr  g js  g jt


                                              g 3r  g 3s  g 3t                g kr  g ks  g kt
                                                   i  i   i
                                                  δ  δ
                                                          p
                                                  m   n  δ

                                                  j
              I 39.  Show that e ijk e mnp = δ ijk  = δ  δ j  δ  j
                                          mnp     m   n   p
                                                  k  δ k  δ k
                                                 δ
                                                  m   n   p
              I 40.  Show that e ijk e mnp A mnp  = A ijk  − A ikj  + A kij  − A jik  + A jki  − A kji
                   Hint: Use the results from problem 39.
              I 41.    Show that
                                      ij
                               (a)   e e ij =2!      (c)   e ijkl e ijkl =4!
                               (b)   e ijk e ijk =3!  (d)  Guess at the result  e i 1 i 2 ...i n  e i 1 i 2 ...i n
   31   32   33   34   35   36   37   38   39   40   41