Page 35 - Intro to Tensor Calculus
P. 35

31



              I 26.  ( Generalized Kronecker delta )  Define the generalized Kronecker delta as the n×n determinant

                                              i  i        i
                                             δ m  δ n  ···  δ
                                                         p
                                                 j
                                             j  δ n  ···  δ  j
                                            δ
                                                                     r
                                   δ ij...k    m         p    where δ is the Kronecker delta.
                                   mn...p  =    .  .  .  .          s
                                             . .  . .  . .  . .

                                             k   k       k
                                            δ m  δ n  ··· δ p
                                            123
                        (a)  Show     e ijk = δ
                                            ijk
                        (b) Show     e ijk  = δ ijk
                                            123
                        (c)  Show    δ ij   ij
                                      mn  = e e mn
                        (d)  Define  δ rs  = δ rsp  (summation on p)
                                     mn    mnp
                                               r
                                                  s
                                                      r s
                            and show    δ rs  = δ δ − δ δ
                                         mn    m n    n m
                            Note that by combining the above result with the result from part (c)
                                                                                                 r s
                                                                                 rs
                                                                                          r
                                                                                            s
                             we obtain the two dimensional form of the e − δ identity  e e mn = δ δ − δ δ .
                                                                                          m n    n m
                                        1 rn
                        (e) Define δ r m  = δ   (summation on n)and show      δ rst  =2δ r p
                                                                              pst
                                        2 mn
                        (f) Show     δ rst  =3!
                                      rst
                                                                      1  1
                                                                    a 1  a 2  a
                                                                             1
                                                                      2  2   3
                          i
                                                 r
              I 27.  Let A denote the cofactor of a in the determinant a 1  a 2  a 2    as given by equation (1.1.25).

                          r
                                                 i
                                                                             3

                                                                    a 1  a 2  a 3
                                                                      3  3   3
                                                                                  r
                                                                                          j k
                                                i
                                (a) Show e  rst A = e ijk s t     (b) Show e rst A = e ijk a a
                                                      a a
                                                r
                                                                                  i
                                                       j k
                                                                                          s t
              I 28.   (a) Show that if A ijk = A jik , i, j, k =1, 2, 3 there is a total of 27 elements, but only 18 are distinct.
                                                          3
                                                                               2
               (b) Show that for i, j, k =1, 2,...,N there are N elements, but only N (N +1)/2 are distinct.
              I 29.  Let a ij = B i B j for i, j =1, 2, 3where B 1 ,B 2 ,B 3 are arbitrary constants. Calculate det(a ij )= |A|.
              I 30.
                                  (a)   For  A =(a ij ),i, j =1, 2, 3,  show  |A| = e ijk a i1 a j2 a k3 .
                                                                                   i j k
                                                   i
                                  (b)   For  A =(a ),i, j =1, 2, 3,  show  |A| = e ijk a a a .
                                                   j
                                                                                   1 2 3
                                                   i
                                  (c)   For  A =(a ),i, j =1, 2, 3,  show  |A| = e ijk 1 2 3
                                                                                  a a a .
                                                                                   i j k
                                                   j
                                                  i
                                  (d)   For  I =(δ ),i, j =1, 2, 3,  show  |I| =1.
                                                  j
              I 31.      Let |A| = e ijk a i1 a j2 a k3 and define A im as the cofactor of a im . Show the determinant can be
               expressed in any of the forms:
                                           (a) |A| = A i1 a i1  where A i1 = e ijk a j2 a k3
                                           (b) |A| = A j2 a j2  where A i2 = e jik a j1 a k3
                                           (c) |A| = A k3 a k3  where  A i3 = e jki a j1 a k2
   30   31   32   33   34   35   36   37   38   39   40