Page 33 - Intro to Tensor Calculus
P. 33

29



                         ~
                                          ~
              I 10.  For A =(1, −1, 0) and B =(4, −3, 2) find using the index notation,
                                        (a)  C i = e ijk A j B k ,  i =1, 2, 3

                                        (b) A i B i
                                        (c)  What do the results in (a) and (b) represent?


                                                       dy 1                         dy 2
              I 11.  Represent the differential equations   = a 11 y 1 + a 12 y 2  and   = a 21 y 1 + a 22 y 2
                                                        dt                           dt
               using the index notation.
              I 12.
                   Let Φ = Φ(r, θ)where r, θ are polar coordinates related to Cartesian coordinates (x, y) by the transfor-
                   mation equations  x = r cos θ  and    y = r sin θ.
                                                              2
                                              ∂Φ             ∂ Φ
                (a) Find the partial derivatives  ,   and
                                              ∂y             ∂y 2
                (b) Combine the result in part (a) with the result from EXAMPLE 1.1-18 to calculate the Laplacian
                                                                      2
                                                                2
                                                               ∂ Φ   ∂ Φ
                                                         2
                                                        ∇ Φ=       +
                                                               ∂x 2  ∂y 2
                   in polar coordinates.
              I 13.  (Index notation) Let a 11 =3,  a 12 =4,  a 21 =5,  a 22 =6.
               Calculate the quantity C = a ij a ij ,i, j =1, 2.

              I 14.  Show the moments of inertia I ij defined by
                                  ZZZ                                         ZZZ
                                             2
                                         2
                             I 11 =    (y + z )ρ(x, y, z) dτ     I 23 = I 32 = −   yzρ(x, y, z) dτ
                                   R                                           R
                                  ZZZ                                         ZZZ
                                             2
                                         2
                             I 22 =    (x + z )ρ(x, y, z) dτ     I 12 = I 21 = −   xyρ(x, y, z) dτ
                                   R                                           R
                                  ZZZ                                         ZZZ
                                             2
                                         2
                             I 33 =    (x + y )ρ(x, y, z) dτ     I 13 = I 31 = −   xzρ(x, y, z) dτ,
                                   R                                           R
                                                              ZZZ

                                                                     m m
                                                                               i j
               can be represented in the index notation as I ij =   x x δ ij − x x  ρdτ, where ρ is the density,
                                                                  R
                        2
                               3
                 1
               x = x, x = y, x = z and dτ = dxdydz is an element of volume.
              I 15.  Determine if the following relation is true or false. Justify your answer.
                                       b e i · ( b e j × b e k )= ( b e i × b e j ) · b e k = e ijk ,  i,j,k =1, 2, 3.
               Hint: Let b e m =(δ 1m ,δ 2m ,δ 3m ).
              I 16.  Without substituting values for i, l =1, 2, 3 calculate all nine terms of the given quantities


                                      il
                                                  i
                                           i
                                (a)  B =(δ A k + δ A j )e jkl    (b)         m  k   k  m
                                                                             i
                                                                                    i
                                           j      k                   A il =(δ B + δ B )e mlk
                                                         i
                              m n
                                                   i
              I 17.  Let A mn x y = 0 for arbitrary x and y , i =1, 2, 3, and show that A ij = 0 for all values of i, j.
   28   29   30   31   32   33   34   35   36   37   38