Page 294 - Intro to Tensor Calculus
P. 294

288



               which can also be written in the alternative form


                                             σ ij = −pδ ij + λ δ ij v k,k + µ (v i,j + v j,i )        (2.5.21)
                                                                     ∗
                                                           ∗
               involving the gradient of the velocity.
                                                                        i
                   Upon transforming from a Cartesian coordinate system y ,i =1, 2, 3 to a more general system of
                           i
               coordinates x ,i =1, 2, 3, we write
                                                                 i
                                                               ∂y ∂y j
                                                     σ mn = σ ij  m  n .                              (2.5.22)
                                                               ∂x ∂x
               Now using the divergence from equation (2.1.3) and substituting equation (2.5.21) into equation (2.5.22) we
               obtain a more general expression for the constitutive equation. Performing the indicated substitutions there
               results
                                                                               i
                                                                             ∂y ∂y j
                                                            k
                                                                 ∗
                                                       ∗
                                        σ mn = −pδ ij + λ δ ij v  + µ (v i,j + v j,i )
                                                            ,k                 m   n
                                                                             ∂x ∂x
                                        σ mn = −pg   + λ g  v k  + µ (v m,n + v n,m ).
                                                                   ∗
                                                        ∗
                                                  mn      mn  ,k
                                                                                                 i
               Dropping the bar notation, the stress-velocity strain relationships in the general coordinates x ,i =1, 2, 3, is
                                                              ik
                                                         ∗
                                         σ mn = −pg mn + λ g mn g v i,k + µ (v m,n + v n,m ).         (2.5.23)
                                                                      ∗
               Summary
                   The basic equations which describe the motion of a Newtonian fluid are :
               Continuity equation (Conservation of mass)
                                      ∂%     i             D%
                                                                    ~
                                        + %v     =0,   or     + %∇· V =0     1 equation.              (2.5.24)
                                      ∂t       ,i          Dt
                                                            i
                                                      i
               Conservation of linear momentum  σ ij  + %b = %˙v ,  3 equations
                                                 ,j
                                                         ~
                                                       DV
                                                                          ~
                                                              ~
                                     or in vector form %   = %b + ∇· σ = %b −∇p + ∇·τ                 (2.5.25)
                                                       Dt
                          P  3  P 3                           P 3  P 3
               where σ =             (−pδ ij + τ ij )ˆ i ˆ j and τ =  j=1 ij ˆe i ˆe j are second order tensors. Conser-
                                                                        τ
                                                  e
                                                e
                             i=1  j=1                           i=1
                                                ji
               vation of angular momentum σ ij  = σ ,  (Reduces the set of equations (2.5.23) to 6 equations.) Rate of
               deformation tensor (Velocity strain tensor)
                                                    1
                                              D ij =  (v i,j + v j,i ) ,  6 equations.                (2.5.26)
                                                    2
               Constitutive equations
                                                       ik
                                                 ∗
                                                               ∗
                                 σ mn = −pg mn + λ g mn g v i,k + µ (v m,n + v n,m ),  6 equations.   (2.5.27)
   289   290   291   292   293   294   295   296   297   298   299