Page 296 - Intro to Tensor Calculus
P. 296

290



               and are given the physical interpretation of an internal force per unit volume. These internal forces arise
                                                            ~
               from the shearing stresses in the moving fluid. If f viscous is zero the vector equation in (2.5.28) is called
               Euler’s equation.
                   If the viscosity coefficients are nonconstant, then the Navier-Stokes equations can be written in the
               Cartesian form


                                 ∂v i    ∂v i        ∂              ∂v k       ∂v i  ∂v j
                                                                 ∗
                               %[   + v j   ]=%b i +    −pδ ij + λ δ ij  + µ ∗    +
                                 ∂t     ∂x j        ∂x j            ∂x k      ∂x j   ∂x i

                                                    ∂p    ∂      ∂v k     ∂       ∂v i  ∂v j
                                             =%b i −   +       λ ∗    +    j  µ ∗    +
                                                    ∂x i  ∂x i   ∂x k    ∂x      ∂x j   ∂x i
                                                                                     2
               which can also be written in terms of the bulk coefficient of viscosity ζ = λ + µ as
                                                                                       ∗
                                                                                 ∗
                                                                                     3

                            ∂v i    ∂v i        ∂p    ∂        2   ∂v k     ∂       ∂v i  ∂v j
                           %[   + v j  ]=%b i −    +      (ζ − µ )      +      µ ∗     +
                                                                 ∗
                             ∂t     ∂x j       ∂x i  ∂x i      3   ∂x k    ∂x j     ∂x j  ∂x i

                                                ∂p    ∂    ∂v k     ∂       ∂v i  ∂v j  2   ∂v k
                                        =%b i −    +      ζ      +   j  µ ∗     +     − δ ij
                                               ∂x i  ∂x i  ∂x k    ∂x       ∂x j  ∂x i  3   ∂x k
               These equations form the basics of viscous flow theory.
                                                                   2
                   In the case of orthogonal coordinates, where g (i)(i) = h (no summation) and g ij =0 for i 6= j, general
                                                                   i
               expressions for the Navier-Stokes equations in terms of the physical components v(1),v(2),v(3) are:
               Navier-Stokes-Duhem equations for compressible fluid in terms of physical components:     (i 6= j 6= k)

                   h
                    ∂v(i)  v(1) ∂v(i)  v(2) ∂v(i)  v(3) ∂v(i)
                  %     +         +         +
                     ∂t    h 1  ∂x 1  h 2  ∂x 2  h 3  ∂x 3

                           v(j)    ∂h j    ∂h i   v(k)     ∂h i   ∂h k
                         −      v(j)  − v(i)    +      v(i)  − v(k)     =
                          h i h j  ∂x i    ∂x j   h i h k  ∂x k    ∂x i

                    b(i)  1 ∂p  1  ∂            µ ∗  h j ∂  v(j)  h i ∂     v(i)     ∂h i
                   %   −      +       λ ∇· V ~  +               +
                                       ∗
                    h i  h i ∂x i  h i ∂x i    h i h j  h i ∂x i  h j  h j ∂x j  h i  ∂h j

                      µ ∗  h  h i  ∂    v(i)     h k ∂    v(k)   i  ∂h i  2µ ∗  1 ∂v(j)  v(k) ∂h j  v(i) ∂h j
                   +                  +                 −             +         +
                     h i h k  h k ∂x k  h i  h i ∂x i  h k  ∂x k  h i h j  h j ∂x j  h j h k ∂x k  h i h j ∂x i

                     2µ ∗  1 ∂v(k)  v(i) ∂h k  v(k) ∂h k  ∂h k  1  ∂           1 ∂v(i)  v(j) ∂h i  v(k) ∂h i
                                                                        ∗
                   −             +         +             +             2µ h j h k    +        +
                     h i h k  h k ∂x k  h i h k ∂x i  h k h j ∂x i  ∂x i  h i h j h k  ∂x i  h i ∂x i  h i h j ∂h j  h i h k ∂x k

                      ∂          h j ∂  v(j)   h i ∂    v(i)     ∂  n       h i  ∂    v(i)     h k ∂    v(k)    o
                   +     µ h i h k           +               +      µ h i h j          +
                          ∗
                                                                     ∗
                     ∂x j        h i ∂x i  h j  h j ∂x j  h i  ∂x k        h k ∂x k  h i  h i ∂x i  h k
                                                                                                      (2.5.31)
               where ∇· ~v is found in equation (2.1.4).
                   In the above equation, cyclic values are assigned to i, j and k. That is, for the x 1 components assign
               the values i =1,j =2,k =3; for the x 2 components assign the values i =2,j =3,k = 1; and for the x 3
               components assign the values i =3,j =1,k =2.
                   The tables 5.2, 5.3 and 5.4 show the expanded form of the Navier-Stokes equations in Cartesian, cylin-
               drical and spherical coordinates respectively.
   291   292   293   294   295   296   297   298   299   300   301