Page 297 - Intro to Tensor Calculus
P. 297

291










                              DV x      ∂p   ∂  h  ∂V x       i  ∂  h     ∂V x  ∂V y   i  ∂  h     ∂V x  ∂V z   i
                                                            ~
                                                         ∗
                            %     =%b x −  +    2µ ∗  + λ ∇· V  +   µ ∗    +       +    µ ∗    +
                              Dt        ∂x  ∂x     ∂x            ∂y     ∂y    ∂x     ∂z     ∂z    ∂x
                              DV y      ∂p   ∂  h     ∂V y  ∂V x   i  ∂  h  ∂V y  i  ∂  h     ∂V y  ∂V z   i
                                                                                ~
                                                                             ∗
                             %    =%b y −  +    µ ∗    +      +     2µ ∗  + λ ∇· V  +   µ ∗    +
                              Dt        ∂y  ∂x      ∂x   ∂y     ∂y     ∂y            ∂z     ∂z    ∂y
                                               h             i    h             i     h              i
                              DV z      ∂p   ∂     ∂V z  ∂V x    ∂     ∂V z  ∂V y   ∂     ∂V z
                                                                                                ∗
                             %    =%b z −  +    µ ∗    +      +    µ ∗    +       +    2µ ∗   + λ ∇· V ~
                              Dt        ∂z  ∂x      ∂x   ∂z     ∂y     ∂y    ∂z     ∂z     ∂z
                              D    ∂()    ∂()    ∂()    ∂()
                      where     () =  + V x  + V y  + V z
                             Dt     ∂t     ∂x     ∂y     ∂z
                                ~
                        and  ∇· V =  ∂V x  +  ∂V y  +  ∂V z
                                    ∂x   ∂y    ∂z
                                                                                                (2.5.31a)
                          Table 5.2 Navier-Stokes equations for compressible fluids in Cartesian coordinates.










                              2              h              i      h                   i
                       DV r  V θ       ∂p  ∂     ∂V r          1 ∂      1 ∂V r  ∂V θ  V θ
                                                           ~
                                                       ∗
                    %      −    =%b r −  +    2µ ∗   + λ ∇· V  +    µ ∗     +     −
                       Dt    r         ∂r  ∂r     ∂r           r ∂θ     r ∂θ   ∂r   r
                                      h             i
                                     ∂     ∂V r  ∂V z   2µ ∗  ∂V r  1 ∂V θ  V r
                                  +    µ ∗    +       +         −      −
                                    ∂z     ∂z    ∂r      r   ∂r   r ∂θ   r
                    h          i               h                  i      h                       i
                     DV θ  V r V θ     1 ∂p  ∂     1 ∂V r  ∂V θ  V θ  1 ∂      1 ∂V θ  V r     ~
                                                                                            ∗
                   %     +      =%b θ −   +    µ ∗      +    −      +     2µ ∗     +     + λ ∇· V
                      Dt     r         r ∂θ  ∂r    r ∂θ   ∂r    r     r ∂θ     r ∂θ   r
                                     ∂  h     1 ∂V z  ∂V θ   i  2µ ∗  h  1 ∂V r  ∂V θ  V θ  i
                                  +    µ ∗      +      +          +     −
                                    ∂z     r ∂θ   ∂z      r   r ∂θ   ∂r   r
                            DV z       ∂p  1 ∂  h     ∂V r  ∂V z   i  1 ∂  h     1 ∂V z  ∂V θ   i  ∂  h  ∂V z  i
                                                                                                    ∗
                                                 ∗
                           %    =%b z −  +      µ r    +       +     µ ∗      +      +    2µ ∗   + λ ∇· V ~
                             Dt        ∂z  r ∂r     ∂z    ∂r     r ∂θ    r ∂θ   ∂z     ∂z     ∂z
                            D     ∂()    ∂()  V θ ∂()  ∂()
                     where    () =   + V r  +       + V z
                            Dt     ∂t    ∂r    r ∂θ     ∂z
                                  1 ∂(rV r )  1 ∂V θ  ∂V z
                       and  ∇· ~ V =     +      +
                                  r  ∂r    r ∂θ   ∂z
                                                                                                    (2.5.31b)
                          Table 5.3 Navier-Stokes equations for compressible fluids in cylindrical coordinates.
   292   293   294   295   296   297   298   299   300   301   302