Page 10 -
P. 10

Contents














        1 Setting the Scene                                             1
           1.1  What Is a Differential Equation? ...............         1
                1.1.1  Concepts ........................                2
           1.2  The Solution and Its Properties ................        4
                1.2.1  An Ordinary Differential Equation ..........      4
           1.3  A Numerical Method ......................               6
           1.4  Cauchy Problems ........................               10
                1.4.1  First-Order Homogeneous Equations .........     10
                1.4.2  First-Order Nonhomogeneous Equations .......    13
                1.4.3  The Wave Equation ..................            15
                1.4.4  The Heat Equation ...................           18
           1.5  Exercises  ............................                20
           1.6  Projects .............................                 28

        2 Two-Point Boundary Value Problems                            39
           2.1  Poisson’s Equation in One Dimension ............       40
                2.1.1  Green’s Function ....................           42
                2.1.2  Smoothness of the Solution ..............       43
                2.1.3  A Maximum Principle .................           44
           2.2  A Finite Difference Approximation ..............        45
                2.2.1  Taylor Series ......................            46
                2.2.2  A System of Algebraic Equations ...........     47
                2.2.3  Gaussian Elimination for Tridiagonal Linear Systems  50
                2.2.4  Diagonal Dominant Matrices .............        53
   5   6   7   8   9   10   11   12   13   14   15