Page 11 -
P. 11

xii
                2.2.5
                                                                       57
           2.3
                Continuous and Discrete Solutions ..............
                                                                       57
                2.3.1
                      Difference and Differential Equations .........
                      Symmetry ........................
                2.3.2
                                                                       58
                      Uniqueness .......................
                                                                       61
                2.3.3
                                                                       61
                2.3.4
                      A Maximum Principle for the Discrete Problem . . .
                2.3.5
                      Convergence of the Discrete Solutions ........
                                                                       63
                Eigenvalue Problems ......................
           2.4
                                                                       65
                                                                       65
                2.4.1
                      The Continuous Eigenvalue Problem .........
                2.4.2
                                                                       68
                      The Discrete Eigenvalue Problem ...........
                Exercises
           2.5  Contents  Positive Definite Matrices ...............    55
                          ............................
                                                                       72
           2.6  Projects .............................                 82
        3 The Heat Equation                                            87
           3.1  A Brief Overview ........................              88
           3.2  Separation of Variables .....................          90
           3.3  The Principle of Superposition ................        92
           3.4  Fourier Coefficients .......................             95
           3.5  Other Boundary Conditions ..................           97
           3.6  The Neumann Problem ....................               98
                3.6.1  The Eigenvalue Problem ................         99
                3.6.2  Particular Solutions .................. 100
                3.6.3  A Formal Solution ................... 101
           3.7  Energy Arguments ....................... 102
           3.8  Differentiation of Integrals ................... 106
           3.9  Exercises  ............................ 108
           3.10 Projects ............................. 113
        4 Finite Difference Schemes For The Heat Equation              117
           4.1  An Explicit Scheme  ...................... 119
           4.2  Fourier Analysis of the Numerical Solution  ......... 122
                4.2.1  Particular Solutions .................. 123
                4.2.2  Comparison of the Analytical and Discrete Solution  127
                4.2.3  Stability Considerations ................ 129
                4.2.4  The Accuracy of the Approximation ......... 130
                4.2.5  Summary of the Comparison ............. 131
           4.3  Von Neumann’s Stability Analysis .............. 132
                4.3.1  Particular Solutions: Continuous and Discrete .... 133
                4.3.2  Examples ........................ 134
                4.3.3  A Nonlinear Problem  ................. 137
           4.4  An Implicit Scheme ....................... 140
                4.4.1  Stability Analysis .................... 143
           4.5  Numerical Stability by Energy Arguments  ......... 145
           4.6  Exercises  ............................ 148
   6   7   8   9   10   11   12   13   14   15   16