Page 12 -
P. 12

xiii
                                                           Contents
                                                                      159
        5 The Wave Equation
                Separation of Variables ..................... 160
           5.1
                Uniqueness and Energy Arguments .............. 163
           5.2
                A Finite Difference Approximation .............. 165
           5.3
                5.3.1
                          ............................ 170
                Exercises
           5.4
                                                                      175
        6 Maximum Principles
                A Two-Point Boundary Value Problem ............ 175
           6.1
                The Linear Heat Equation ................... 178
           6.2
                6.2.1  Stability Analysis .................... 168
                      The Continuous Case ................. 180
                6.2.2  Uniqueness and Stability  ............... 183
                6.2.3  The Explicit Finite Difference Scheme ........ 184
                6.2.4  The Implicit Finite Difference Scheme ........ 186
           6.3  The Nonlinear Heat Equation ................. 188
                6.3.1  The Continuous Case ................. 189
                6.3.2  An Explicit Finite Difference Scheme ......... 190
           6.4  Harmonic Functions ...................... 191
                6.4.1  Maximum Principles for Harmonic Functions .... 193
           6.5  Discrete Harmonic Functions ................. 195
           6.6  Exercises  ............................ 201
        7 Poisson’s Equation in Two Space Dimensions                  209
           7.1  Rectangular Domains ..................... 209
           7.2  Polar Coordinates ....................... 212
                7.2.1  The Disc ........................ 213
                7.2.2  A Wedge ........................ 216
                7.2.3  A Corner Singularity .................. 217
           7.3  Applications of the Divergence Theorem  .......... 218
           7.4  The Mean Value Property for Harmonic Functions ..... 222
           7.5  A Finite Difference Approximation .............. 225
                7.5.1  The Five-Point Stencil ................. 225
                7.5.2  An Error Estimate ................... 228
           7.6  Gaussian Elimination for General Systems .......... 230
                7.6.1  Upper Triangular Systems ............... 230
                7.6.2  General Systems .................... 231
                7.6.3  Banded Systems .................... 234
                7.6.4  Positive Definite Systems ............... 236
           7.7  Exercises  ............................ 237
        8 Orthogonality and General Fourier Series                    245
           8.1  The Full Fourier Series ..................... 246
                8.1.1  Even and Odd Functions ............... 249
                8.1.2  Differentiation of Fourier Series ............ 252
                8.1.3  The Complex Form ................... 255
   7   8   9   10   11   12   13   14   15   16   17