Page 13 -
P. 13

xiv
                8.1.4
           8.2
                Boundary Value Problems and Orthogonal Functions .... 257
                      Other Boundary Conditions .............. 257
                8.2.1
                      Sturm-Liouville Problems ............... 261
                8.2.2
                The Mean Square Distance .................. 264
           8.3
                General Fourier Series ..................... 267
           8.4
                A Poincar´e Inequality ..................... 273
           8.5
                Exercises
           8.6
                          ............................ 276
        9 Convergence of Fourier Series
                                                                      285
           9.1  Contents  Changing the Scale ................... 256
                Different Notions of Convergence ............... 285
           9.2  Pointwise Convergence ..................... 290
           9.3  Uniform Convergence  ..................... 296
           9.4  Mean Square Convergence ................... 300
           9.5  Smoothness and Decay of Fourier Coefficients ........ 302
           9.6  Exercises  ............................ 307
        10 The Heat Equation Revisited                                313
           10.1 Compatibility Conditions ................... 314
           10.2 Fourier’s Method: A Mathematical Justification ....... 319
                10.2.1 The Smoothing Property ............... 319
                10.2.2 The Differential Equation ............... 321
                10.2.3 The Initial Condition ................. 323
                10.2.4 Smooth and Compatible Initial Functions ...... 325
           10.3 Convergence of Finite Difference Solutions .......... 327
           10.4 Exercises  ............................ 331
        11 Reaction-Diffusion Equations                                337
           11.1 The Logistic Model of Population Growth .......... 337
                11.1.1 A Numerical Method for the Logistic Model ..... 339
           11.2 Fisher’s Equation ........................ 340
           11.3 A Finite Difference Scheme for Fisher’s Equation ...... 342
           11.4 An Invariant Region ...................... 343
           11.5 The Asymptotic Solution ................... 346
           11.6 Energy Arguments ....................... 349
                11.6.1 An Invariant Region .................. 350
                11.6.2 Convergence Towards Equilibrium .......... 351
                11.6.3 Decay of Derivatives .................. 352
           11.7 Blowup of Solutions ...................... 354
           11.8 Exercises  ............................ 357
           11.9 Projects ............................. 360
        12 Applications of the Fourier Transform                      365
           12.1 The Fourier Transform ..................... 366
           12.2 Properties of the Fourier Transform  ............. 368
   8   9   10   11   12   13   14   15   16   17   18