Page 186 - Introduction to Computational Fluid Dynamics
P. 186

P1: IWV
                           CB908/Date
            0521853265c06
                        6.2 CURVILINEAR GRIDS
                                             1
                                    ∂ξ 2  0 521 85326 5     ∂x 1     1     ∂x 2     β 2 1  May 25, 2005  11:10 165
                                        =       cof        =−               =       ,      (6.11)
                                    ∂x 1  Det A      ∂ξ 2      Det A   ∂ξ 1    Det A
                                             1                  1              β 2
                                     ∂ξ 2             ∂x 2            ∂x 1      2
                                         =       cof       =               =       ,       (6.12)
                                     ∂x 2  Det A      ∂ξ 2    Det A   ∂ξ 1    Det A
                        where the βs are called the geometric coefficients and are given by
                                     1   ∂x 2    2     ∂x 1    1     ∂x 2    2   ∂x 1
                                    β =     ,   β =−      ,   β =−      ,  β =      .      (6.13)
                                     1           1             2             2
                                         ∂ξ 2          ∂ξ 2          ∂ξ 1        ∂ξ 1
                        Further, it follows that
                                              ∂x 1 ∂x 2  ∂x 1 ∂x 2  1  2   1  2
                                     Det A =         −          = β β − β β = J,           (6.14)
                                                                             1
                                                                   1
                                                                      2
                                                                           2
                                              ∂ξ 1 ∂ξ 2  ∂ξ 2 ∂ξ 1
                        where symbol J stands for the Jacobian of the matrix A. We can now rewrite
                        Equations 6.2 and 6.3 as
                                               ∂     1     1  ∂    1  ∂
                                                  =      β 1   + β 2     ,                 (6.15)
                                              ∂x 1   J      ∂ξ 1    ∂ξ 2
                                                ∂    1     2  ∂    2  ∂
                                                   =     β 1   + β 2      .                (6.16)
                                                     J
                                               ∂x 2         ∂ξ 1    ∂ξ 2

                        6.2.2 Transport Equation

                        The first task is to transform the general transport equation (5.1) from the (x 1 , x 2 )
                        coordinate system to the (ξ 1 ,ξ 2 ) coordinate system using relations (6.15) and (6.16).
                        Thus,
                             ∂(ρ )    1     ∂(rq 1 )    ∂(rq 1 )   ∂(rq 2 )    ∂(rq 2 )
                           r       +     β 1 1     + β 2 1    + β 1 2     + β 2 2      = rS.
                               ∂t     J       ∂ξ 1       ∂ξ 2        ∂ξ 1       ∂ξ 2
                                                                                           (6.17)

                        This equation can also be written as
                                             
  1        
  1         
  2        
  2
                                  ∂(ρ )    ∂ β rq 1     ∂ β rq 1    ∂ β rq 2    ∂ β rq 2
                                                           2
                                               1
                                                                                    2
                                                                        1
                               rJ        +           +            +           +
                                    ∂t        ∂ξ 1         ∂ξ 2        ∂ξ 1        ∂ξ 2
                                                   1     1            2      2
                                                 ∂β    ∂β           ∂β    ∂β
                                                   1     2            1     2
                                         = rq 1      +      + rq 2      +      + rJ S.     (6.18)
                                                 ∂ξ 1  ∂ξ 2         ∂ξ 1  ∂ξ 2
                        Using definitions (6.13), however, we can show that the terms in the square brackets
                        are identically zero. Hence, Equation 6.18 can be written as
                                ∂(ρ )      ∂ 
                   ∂
                                                                      1
                                                                               2
                                                1
                                                        2
                             rJ        +      β rq 1 + β rq 2 +      β rq 1 + β rq 2 = rJ S.
                                                        1
                                                                               2
                                                                      2
                                               1
                                  ∂t      ∂ξ 1                  ∂ξ 2
                                                                                           (6.19)
   181   182   183   184   185   186   187   188   189   190   191