Page 189 - Introduction to Computational Fluid Dynamics
P. 189

P1: IWV
                                        0 521 85326 5
                                                                                                11:10
                                                                                   May 25, 2005
            0521853265c06
                           CB908/Date
                     168
                                                  ξ 2           2D CONVECTION – COMPLEX DOMAINS
                                                                                   NE
                                                            N
                                                                            ne
                                          NW
                                                                n
                                                     nw
                                                                                      E
                                                                              e
                                                                       P
                                                     U f1
                            X 2
                                                                                se
                                                                                        ξ 1
                                                        w
                                                  W
                                                                      s  U f2
                                                                                             SE
                                                            sw
                                         X 1
                                                                          S
                                                         SW
                            Figure 6.4. Definition of node P and contravariant flow velocities.


                            6.2.4 Discretisation

                            Our next task is to discretise Equation 6.20 for the general variable  . To do this, we
                            define the typical node P of a curvilinear grid as shown in Figure 6.4. The cell faces
                            (ne-se, se-sw, sw-nw, and nw-ne), as in the case of Cartesian grids, are assumed to
                            be midway between the adjacent nodes. In curvilinear coordinates,  ξ 1 =  ξ 2 = 1,
                                                                                    1
                            as already explained. Then, using the IOCV method, integration of Equation 6.20
                            over the control volume surrounding node P gives
                                   r P J P  
     o  o
                                         ρ P   P − ρ    + [C e   e − d e (  E −   P )]
                                     t            P  P
                                                        − [C w   w − d w (  P −   W )]
                                                        + [C n   n − d n (  N −   P )]

                                                        − [C s   s − d s (  P −   S )]
                                                        = AC e (  ne −   se ) + AC w (  sw −   nw )

                                                          + AC n (  ne −   nw ) + AC s (  sw −   se )
                                                          +r P J P S,                          (6.32)



                            1
                              Each term in Equation 6.20 is integrated as
                                                           n  e

                                                               (Term)dξ 1 dξ 2 .
                                                          s  w
   184   185   186   187   188   189   190   191   192   193   194