Page 96 - Introduction to Computational Fluid Dynamics
P. 96

P1: IWV
                           CB908/Date
                                        0 521 85326 5
            0521853265c04
                        4.3 TRANSFORMATION TO (x, ω) COORDINATES
                        where, for convenience,                                    May 25, 2005  11:7  75
                                                     ψ EI ≡ ψ E − ψ I .                    (4.12)
                           Thus, substituting Equation 4.11 in Equation 4.10, we can write Equation 4.9 as

                                                              ∂           ∂       S
                                    ∂                ∂               2
                                          + (a + b ω)             ρ r u 
           ,      (4.13)
                                                            =                  +
                                    ∂x    ω          ∂ω    x  ∂ψ          ∂ψ     ρ u
                        where
                                                            −1  ∂ψ I
                                                    a ≡−ψ         ,                        (4.14)
                                                            EI
                                                               ∂x
                                                    b ≡−ψ   −1  ∂ψ EI  .                   (4.15)
                                                            EI
                                                                ∂x
                           Now, invoking Equation 4.2 again, we obtain
                                                      ∂      −1  ∂
                                                         = ψ EI    .                       (4.16)
                                                     ∂ψ         ∂ω

                        Therefore, Equation 4.13 can be written as

                                                                 ∂    ∂         S
                                      ∂                 ∂
                                            + (a + b ω)              c            ,        (4.17)
                                                              =             +
                                       ∂x    ω          ∂ω    x  ∂ω   ∂ω   x   ρ u
                        where
                                                          −2
                                                               2
                                                     c ≡ ψ EI  ρ r u 
.                    (4.18)
                           Equation 4.17 represents Equation 4.1 in the (x, ω) coordinate system in
                        nonconservative form. To develop the conservative counterpart, the equation is
                        written as

                                          ∂                  ∂         ∂             S
                                 ∂
                                       +      (a + b ω)  − c     −       (a + b ω) =    ,  (4.19)
                                 ∂x      ∂ω                  ∂ω       ∂ω            ρ u
                                     ω
                        where, since a and b are not functions of ω,
                                                     ∂
                                                        (a + b ω) = b  .                   (4.20)
                                                    ∂ω
                        Now, consider the identity

                                          ∂           ∂           ∂ψ EI   ∂
                                     ψ −1   (ψ EI  ) =    +  ψ  −1     =      − b  .       (4.21)
                                       EI                      EI
                                         ∂x           ∂x           ∂x     ∂x
                        Using the last two equations, we can write Equation 4.19 as

                                   ∂            ∂                       ∂   
    ψ EI S
                                      [ψ EI  ] +    ψ EI  (a + b ω)  − c      =       .    (4.22)
                                  ∂x           ∂ω                       ∂ω        ρ u
                           This is the required boundary layer equation in the (x, ω) coordinate system
                        written in conservative form. It will be useful at this stage to interpret the terms
                        in Equation 4.22. Thus, from Equations 4.12 and 4.5, it is easy to show that ψ EI
   91   92   93   94   95   96   97   98   99   100   101