Page 597 - Introduction to Information Optics
P. 597

10.2. A Brief Review of Types of Fiber-Optic Sensors  581
       where /, represents the input polarization vector, M n (n = 1,2,...,/) repre-
       sents the nth transformation matrix, and / 0 represents the output polarization
       vector.
         To illustrate how to use above method, let us look at the following example.

       Example 10.1. A unit intensity light beam linearly polarized in the x direction
       passes through a linear retarder with fast axis at angle 6, relative to the x axis
       and retarding amount, 8. Calculate the output polarization state in terms of 6
       and 8 using Mueller calculus.
       Solve: In this case,
              rr







                                               0                 0
               0 co                   ( 1 — cos 8) sin 26 cos 26  — sin 26 cos 6
         M
               0 (1— cos 8) sin 26 cos 26                    cos 26 sin 6
               0       sin 26 sin 8        — cos 28 sin 6      cos<5
                                                                       J
       Thus,

                             0                    0                0
                       2
                               2
                 0  cos 2$ + sin 20cos(5  (1— cos S) sin 26 cos 26  —sin 26 cos 8
                                            2
                                                    2
                 0 ( 1 — cos <5) sin 26 cos 26  sm 26 + co$ 26cos8  cos 26 sin 8
                 0       sin 26 sin 8        —cos 26 sin 8       cos 8





                   °j
                          1
                    2
                            2
                  cos 2$ + sin 2# cos 8
                 (1 -cos 8) sin 26 cos 26
                      sin 26 sin 8

       Thus, in general, the output becomes an elliptical polarization state.
   592   593   594   595   596   597   598   599   600   601   602